On the concentration of standing waves for NLS equation with point-dipole potential

被引:0
作者
Wang, Jun [1 ,2 ]
Li, Xiaoguang [1 ,2 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610068, Peoples R China
基金
中国国家自然科学基金;
关键词
minimization problem; minimizers; concentration behavior; NONLINEAR SCHRODINGER-EQUATIONS; BOSE-EINSTEIN CONDENSATION; BLOW-UP SOLUTIONS; MINIMAL MASS; STABILITY; SINGULARITIES; EXISTENCE; COLLAPSE;
D O I
10.1007/s10473-025-0403-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following minimization problem d(p)(M-p):=inf{E-p(u):parallel to u parallel to L2=M-p} where the Gross-Pitaevskii energy functional E-p(u)=integral(RN)divided by del u divided by(2)-c divided by u divided by(2)/divided by x divided by(2)+V(x)divided by u divided by(2)dx-2/p+2 integral(RN)divided by u divided by(p+2)dx. When p = p & lowast; := 4/N, the precise concentration behavior of minimizers is analyzed as M-p & lowast;NE arrow parallel to Q(p)& lowast;parallel to(L2), where Q(p)* is the unique radially positive solution of -Delta phi-c phi/divided by x divided by(2)-divided by phi divided by(p & lowast;+1)phi=0. When 0 < p < p*, we prove that all minimizers must blow up if lim(p -> p & lowast;)M(p)>= & Vert;Q(p)& lowast;& Vert;(L2). On this argument, the detailed concentration behavior of minimizers is established as p NE arrow p*.
引用
收藏
页码:1265 / 1283
页数:19
相关论文
共 36 条
[1]   Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case [J].
Angulo, J ;
Bona, JL ;
Linares, F ;
Scialom, M .
NONLINEARITY, 2002, 15 (03) :759-786
[2]  
Angulo J, 1999, CH CRC RES NOTES, V401, P3
[3]   MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION [J].
Bao, Weizhu ;
Cai, Yongyong .
KINETIC AND RELATED MODELS, 2013, 6 (01) :1-135
[4]   On stability and instability of standing waves for the nonlinear Schrodinger equation with an inverse-square potential [J].
Bensouilah, Abdelwahab ;
Van Duong Dinh ;
Zhu, Shihui .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
[5]  
Brezis H., 1983, ANALYSE FONCTIONNELL
[6]   Quantum anomaly in molecular physics [J].
Camblong, HE ;
Epele, LN ;
Fanchiotti, H ;
Canal, CAG .
PHYSICAL REVIEW LETTERS, 2001, 87 (22) :art. no.-220402
[7]   On the inhomogeneous NLS with inverse-square potential [J].
Campos, Luccas ;
Guzman, Carlos M. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04)
[8]  
Cazenave T., 2003, Semilinear Schrdinger Equations
[9]  
Csobo E., 2021, Nonlinear Differ Equ Appl, V28, P1
[10]   Minimal mass blow-up solutions for the L2 critical NLS with inverse-square potential [J].
Csobo, Elek ;
Genoud, Francois .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 168 :110-129