A New Approach to Estimate the Parameters of the Joint Distribution of the Wind Speed and the Wind Direction, Modelled with the Angular-Linear Model

被引:0
作者
Martinez-Gutierrez, Samuel [1 ]
Merino, Alejandro [1 ]
Sarabia, Luis A. [2 ]
Sarabia, Daniel [1 ]
Ruiz-Gonzalez, Ruben [1 ]
机构
[1] Univ Burgos, Higher Polytech Sch, Dept Digitalizat, Avda Cantabria S-N, Burgos 09006, Spain
[2] Univ Burgos, Fac Sci, Dept Math & Computat, Plaza Misael Banuelos S-N, Burgos 09001, Spain
关键词
wind speed; wind direction; joint probability distributions; parameter estimation; computation time; VON MISES DISTRIBUTIONS; ENERGY; DENSITY; MIXTURE; ATLAS;
D O I
10.3390/math13081238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to assess the potential and suitability of a location to deploy a wind farm, it is essential to have a model of the joint probability density function of the wind speed and direction, fV,Theta(v,theta). The angular-linear model is widely used to obtain the analytical expression of the joint density from the parametric estimation of the probability density functions of wind speed, fV(v), and wind direction, f Theta(theta). In previous studies, the parameters of the marginal distributions were obtained by fitting the wind measurements to the cumulative distribution function (CDF) using the least squares method and then calculating the probability density function (PDF). In this study, we propose to directly fit the probability density function and then calculate the cumulative distribution function. It is shown that it has both computational and goodness-of-fit advantages. In addition, previous studies have been expanded, analysing the effect of the number of intervals on which wind speed and direction ranges are divided. The new parameter fitting method is evaluated and compared with the original proposal in terms of goodness of fit, using the coefficient of determination R2 as an estimator both in the probability density function (R2pdf) and in the cumulative distribution function (R2cdf). The computational times required to estimate the parameters using both methods will also be compared. The new approach is faster, and the goodness of the fitting is satisfactory for both estimators: it produces a better R2pdf, without significantly affecting the R2cdf, in contrast to the initial one where the R2pdf is smaller.
引用
收藏
页数:21
相关论文
共 35 条
[1]   Capacity factor of wind turbines [J].
Abed, KA ;
ElMallah, AA .
ENERGY, 1997, 22 (05) :487-491
[2]  
[Anonymous], 2024, MATLAB Version 24.1
[3]  
[Anonymous], 2024, Optimization ToolboxTM User's Guide
[4]  
[Anonymous], 2008, Boletin Oficial de Castilla Y Leon
[5]  
Basile S, 2015, INT CONF RENEW ENERG, P1591, DOI 10.1109/ICRERA.2015.7418675
[6]  
BOE, BOE-A-2019-6691 Resolucion de 12 de Abril de 2019, de la Direccion General de Biodiversidad y Calidad Ambiental, por la Que Se Formula Declaracion de Impacto Ambiental Del Proyecto Parque Eolico Puylobo de 62,37 MW, Situado en Borja y Mallen (Zaragoza) y Cortes (Navarra)
[7]   Review of power curve modelling for wind turbines [J].
Carrillo, C. ;
Obando Montano, A. F. ;
Cidras, J. ;
Diaz-Dorado, E. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 21 :572-581
[8]   A review of wind speed probability distributions used in wind energy analysis Case studies in the Canary Islands [J].
Carta, J. A. ;
Ramirez, P. ;
Velazquez, S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (05) :933-955
[9]   A joint probability density function of wind speed, and direction for wind energy analysis [J].
Carta, Jose A. ;
Ramirez, Penelope ;
Bueno, Celia .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (06) :1309-1320
[10]   Statistical modelling of directional wind speeds using mixtures of von Mises distributions:: Case study [J].
Carta, Jose A. ;
Bueno, Celia ;
Ramirez, Penelope .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (05) :897-907