Numerical Resolution of the LWR Method for First Order Traffic Flow Model

被引:3
作者
El Ouenjli, Hamza [1 ]
Chafi, Anas [1 ]
Alami, Salaheddine Kammouri [1 ]
机构
[1] Sidi Mohammed Ben Abdellah Univ, Fac Sci Fez, Imouzzer Rd,BP 2202, Fes, Morocco
来源
DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2022, VOL 2 | 2022年 / 455卷
关键词
Traffic flow; Macroscopic model; Numerical solution; Space-time discretization; Partial differential equation;
D O I
10.1007/978-3-031-02447-4_75
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Congestion in Moroccan roads especially in urban areas is increasing and gaining in scale more and more nowadays, it can be induced by roads perforated, absence of traffic signs, behaviors of drivers, overcapacity of roads, illegal parking etc. Also, disproportional traffic lights cycle in a junction also serves as cause of congestion. One of the most innovative solutions is to build an intelligent transportation system (ITS) to collect data in real time and adjust the cycle time of traffic lights in every road intersection, provide alternative paths and predict when and where congestion will occur. Having a numerical model that give reliable solutions in real time using accurate data is essential. In this perspective, we use the LWR macroscopic model to model traffic flow and we adapt numerical resolution methods of Lax-Friedrichs and Godunov Schemes to test their accuracy and adaptability for traffic situations.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 14 条
[1]  
Chanut S., 2005, Modelisation dynamique macroscopique de l'ecoulement d un trafic routier heterogene poids lourds et vehicules legers
[2]   Traffic density control for automated highway systems [J].
Chien, CC ;
Zhang, YP ;
Ioannou, PA .
AUTOMATICA, 1997, 33 (07) :1273-1285
[3]  
Gerlough D.L., 1975, Traffic Flow Theory - A Monograph
[4]  
Giorgi F., 2002, Prise en compte des transports en commun de surface dans la modelisation macroscopique de l'ecoulement du trafic
[5]  
Guelfi N., 2006, A formal framework to generate XPDL specifications from UML activity diagrams
[6]   Solution to the user equilibrium dynamic traffic routing problem using feedback linearization [J].
Kachroo, P ;
Ozbay, K .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1998, 32 (05) :343-360
[7]  
Lebacque J.-P., 1999, Proceedings of the FVCA II, P551
[8]  
Lighthill M., 1956, P ROYAL SOC, V229A, P281
[9]  
Nikolov E., 2008, P 9 WSEAS INT C EV C
[10]  
Rascle M, 2002, MATH COMPUT MODEL, V35, P581, DOI 10.1016/S0895-7177(02)80022-X