Functional inequalities for the numerical radius

被引:0
作者
Moradi, Hamid Reza [1 ]
Sababheh, Mohammad [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Iran
[2] Princess Sumaya Univ Technol, Dept Basic Sci, Amman 11941, Jordan
关键词
Numerical radius; Doubly-convex function; Operator norm; BUZANO;
D O I
10.1007/s12215-025-01219-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show some new forms of upper bounds for the numerical radii of Hilbert space operators involving a single operator, the product of two and three operators, and off-diagonal operator matrices. The obtained results add a new collection of independent sets that we compare thoroughly with the existing results through numerous examples. Numerical experiments are conducted as there are no explicit relations between the obtained bounds and the existing literature. Thus, these numerical calculations support the non-triviality of the obtained results.
引用
收藏
页数:18
相关论文
共 27 条
[1]  
Abu-Omar A, 2015, HOUSTON J MATH, V41, P1163
[2]   Generalized spectral radius and norm inequalities for Hilbert space operators [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (12)
[3]   Weak majorization inequalities and convex functions [J].
Aujla, JS ;
Silva, FC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 :217-233
[5]   New upper bounds for the numerical radius of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
[6]  
Buzano ML., 1974, Sem. Mat. Univ. e Politec. Torino, V31, P405
[7]   A Buzano type inequality for two Hermitian forms and applications [J].
Dragomir, S. S. .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03) :514-525
[8]   BUZANO'S INEQUALITY HOLDS FOR ANY PROJECTION [J].
Dragomir, S. S. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 93 (03) :504-510
[9]   Numerical radius inequalities for Hilbert space operators. II [J].
El-Haddad, Mohammad ;
Kittaneh, Fuad .
STUDIA MATHEMATICA, 2007, 182 (02) :133-140
[10]   UNITARILY-INVARIANT OPERATOR NORMS [J].
FONG, CK ;
HOLBROOK, JAR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1983, 35 (02) :274-299