Efficient Finite-Difference Estimation of Second-Order Parametric Sensitivities for Stochastic Discrete Biochemical Systems

被引:1
作者
Jabeen, Fauzia [1 ]
Ilie, Silvana [1 ]
机构
[1] Toronto Metropolitan Univ, Dept Math, Toronto, ON M5B 2K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
stochastic simulation algorithm; stochastic models of biochemical kinetics; sensitivity analysis; tau-leaping method; variable time stepping; SIMULATION;
D O I
10.3390/mca29060120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Biochemical reaction systems in a cell exhibit stochastic behaviour, owing to the unpredictable nature of the molecular interactions. The fluctuations at the molecular level may lead to a different behaviour than that predicted by the deterministic model of the reaction rate equations, when some reacting species have low population numbers. As a result, stochastic models are vital to accurately describe system dynamics. Sensitivity analysis is an important method for studying the influence of the variations in various parameters on the output of a biochemical model. We propose a finite-difference strategy for approximating second-order parametric sensitivities for stochastic discrete models of biochemically reacting systems. This strategy utilizes adaptive tau-leaping schemes and coupling of the perturbed and nominal processes for an efficient sensitivity estimation. The advantages of the new technique are demonstrated through its application to several biochemical system models with practical significance.
引用
收藏
页数:18
相关论文
共 38 条
[1]   AN EFFICIENT FINITE DIFFERENCE METHOD FOR PARAMETER SENSITIVITIES OF CONTINUOUS TIME MARKOV CHAINS [J].
Anderson, David F. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) :2237-2258
[2]   Systems biology: parameter estimation for biochemical models [J].
Ashyraliyev, Maksat ;
Fomekong-Nanfack, Yves ;
Kaandorp, Jaap A. ;
Blom, Joke G. .
FEBS JOURNAL, 2009, 276 (04) :886-902
[3]   Parameter estimation for the reaction-diffusion master equation [J].
Barrows, Dexter ;
Ilie, Silvana .
AIP ADVANCES, 2023, 13 (06)
[4]   Stochastic model of protein-protein interaction: Why signaling proteins need to be colocalized [J].
Batada, NN ;
Shepp, LA ;
Siegmund, DO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6445-6449
[5]   Efficient step size selection for the tau-leaping simulation method [J].
Cao, Y ;
Gillespie, DT ;
Petzold, LR .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (04)
[6]   The slow-scale stochastic simulation algorithm [J].
Cao, Y ;
Gillespie, DT ;
Petzold, LR .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01)
[7]   Balanced implicit Patankar-Euler methods for positive solutions of stochastic differential equations of biological regulatory systems [J].
Chen, Aimin ;
Ren, Quanwei ;
Zhou, Tianshou ;
Burrage, Pamela ;
Tian, Tianhai ;
Burrage, Kevin .
JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (06)
[8]  
Degasperi A, 2008, LECT NOTES COMPUT SC, V5016, P1
[9]  
Ethier SN., 2009, Markov Processes, Characterization and Convergence, Vvol. 282
[10]   Quantifying Parameter Interdependence in Stochastic Discrete Models of Biochemical Systems [J].
Gholami, Samaneh ;
Ilie, Silvana .
ENTROPY, 2023, 25 (08)