Digital twin-driven few-shot fault data generation and intelligent diagnosis for rolling bearings

被引:0
作者
Zhang, Wei [1 ,2 ]
Yan, Baokang [1 ,2 ]
Lu, Siyi [2 ]
Du, Di [2 ]
Zhou, Fengqi [2 ]
机构
[1] Hubei Univ Technol, Sch Mech Engn, Hubei Key Lab Modern Mfg Qual Engn, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Minist Educ Met Automat & Detect Technol, Engn Res Ctr, Heping Rd 947, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearings; few-shot; fault diagnosis; digital twin; simulated vibration signals;
D O I
10.1080/23307706.2025.2503793
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of limited data availability under few-shot learning conditions, we propose an innovative fault data generation and intelligent diagnosis method for rolling bearings driven by a Digital Twin (DT) framework. To address limited fault samples, a Convolution-Bi-directional Long Short-Term Memory (Conv-BiLSTM) network integrates virtual and real-world signals to generate simulated vibration signals. Time-frequency characteristics are leveraged to reconstruct diverse fault scenarios for inner rings, outer rings, and rolling elements from a single fault signal, enriching the dataset. a Secretary Bird Optimisation Algorithm (SBOA) optimises a Kolmogorov-Arnold Network (KAN) for intelligent diagnosis using the generated data. Experiments show our method outperforms traditional approaches, achieving 97.9% accuracy. Validated on two datasets, it demonstrates robustness and practicality for few-shot fault diagnosis.
引用
收藏
页数:18
相关论文
共 33 条
[1]   An enhanced methodology of Fault Detection and Diagnosis based on Digital Twin [J].
Abdoune, Farah ;
Nouiri, Maroua ;
Cardin, Olivier ;
Castagna, Pierre .
IFAC PAPERSONLINE, 2022, 55 (19) :43-48
[2]  
[曹正 Cao Zheng], 2023, [仪器仪表学报, Chinese Journal of Scientific Instrument], V44, P218
[3]   Design and Implementation of Stochastic Neural Networks Using Superconductor Quantum-Flux-Parametron Devices [J].
Chen, Olivia ;
Wang, Yanzhi ;
Zhang, Renyuan ;
Yoshikawa, Nobuyuki .
2022 IEEE 35TH INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (IEEE SOCC 2022), 2022, :267-272
[4]   Attentional Feature Fusion [J].
Dai, Yimian ;
Gieseke, Fabian ;
Oehmcke, Stefan ;
Wu, Yiquan ;
Barnard, Kobus .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, :3559-3568
[5]   Generative adversarial network to alleviate information insufficiency in intelligent fault diagnosis by generating continuations of signals [J].
Dai, Zhenglin ;
Zhao, Liping ;
Wang, Ke ;
Zhou, Yanlin .
APPLIED SOFT COMPUTING, 2023, 147
[6]   Comprehensive study on the nonlinear parameter vibrations of the rotor system due to the varying compliance of ball bearing [J].
Fang, Bin ;
Zhang, Jinhua ;
Yan, Ke ;
Hong, Jun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
[7]   Digital Twin Enabled Domain Adversarial Graph Networks for Bearing Fault Diagnosis [J].
Feng, Ke ;
Xu, Yadong ;
Wang, Yulin ;
Li, Sheng ;
Jiang, Qiubo ;
Sun, Beibei ;
Zheng, Jinde ;
Ni, Qing .
IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, 2023, 1 :113-122
[8]   Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems [J].
Fu, Youfa ;
Liu, Dan ;
Chen, Jiadui ;
He, Ling .
ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (05)
[9]   Validation of a finite-element model of a wind turbine blade bearing [J].
Grassmann, Matthis ;
Schleich, Florian ;
Stammler, Matthias .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 221
[10]  
Grieves M., 2017, Transdiscipl. Perspect. Complex Syst., P85, DOI [DOI 10.1007/978-3-319-38756-7_4, DOI 10.1007/978-3-319-38756-74]