Ground state solution for a generalized Choquard Schrodinger equation with vanishing potential in homogeneous fractional Musielak Sobolev spaces

被引:0
作者
Gupta, Shilpa [1 ]
Dwivedi, Gaurav [2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, India
[2] Birla Inst Technol & Sci Pilani, Dept Math, Pilani Campus, Pilani 333031, India
关键词
Variational methods; Choquard equation; Fractional Musielak Sobolev spaces; Vanishing potential; Hardy-Littlewood-Sobolev inequality; EMBEDDING-THEOREMS; EXISTENCE;
D O I
10.1007/s13540-025-00411-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to establish the existence of a weak solution for the following problem: (-Delta)Hsu(x)+V(x)h(x,x,|u|)u(x)=integral RNK(y)F(u(y))|x-y|lambda dyK(x)f(u(x)), in RN where N >= 1, s is an element of(0,1),lambda is an element of(0,N),H(x,y,t)=integral 0|t|h(x,y,r)rdr,h:RNxRNx[0,infinity)->[0,infinity) is a generalized N-function and (-Delta)Hs is a generalized fractional Laplace operator. The functions V,K:RN ->(0,infinity), non-linear function f:R -> R are continuous and F(t)=integral 0tf(r)dr. First, we introduce the homogeneous fractional Musielak-Sobolev space and investigate their properties. After that, we pose the given problem in that space. To establish our existence results, we use variational technique based on the mountain pass theorem. We also prove the existence of a ground state solution by the method of Nehari manifold.
引用
收藏
页码:1476 / 1502
页数:27
相关论文
共 45 条
[1]  
Adams R.A., 2003, Sobolev Spaces, V2nd
[2]   Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Yang, Minbo .
ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (04) :331-345
[3]   Existence of semiclassical ground state solutions for a generalized Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) :4133-4164
[4]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[5]  
[Anonymous], 1977, Funct. Approx
[6]   On a class of nonlocal problems in new fractional Musielak-Sobolev spaces [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. ;
Srati, M. .
APPLICABLE ANALYSIS, 2022, 101 (06) :1933-1952
[7]   Embedding and extension results in fractional Musielak-Sobolev spaces [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Shimi, Mohammed ;
Srati, Mohammed .
APPLICABLE ANALYSIS, 2023, 102 (01) :195-219
[8]   Some approximation properties in fractional Musielak-Sobolev spaces [J].
Baalal, Azeddine ;
Berghout, Mohamed ;
Ouali, El-Houcine .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
[9]   On the fractional Musielak-Sobolev spaces in Rd: Embedding results & applications [J].
Bahrouni, Anouar ;
Missaoui, Hlel ;
Ounaies, Hichem .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (01)
[10]   Strauss and Lions Type Theorems for the Fractional Sobolev Spaces with Variable Exponent and Applications to Nonlocal Kirchhoff-Choquard Problem [J].
Bahrouni, Sabri ;
Ounaies, Hichem .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)