Novel method for measuring interface behavior and flow parameters in bubble-particle detachment using PIV-LIF and machine learning image segmentation

被引:0
作者
Ding, Shihao [1 ]
Yin, Qinglin [1 ,2 ]
Shi, Wenqing [1 ,2 ]
Zhang, Youfei [1 ,2 ]
He, Qi [1 ,2 ]
Gui, Xiahui [1 ]
Xing, Yaowen [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Coking Coal Resources Green Exploita, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Bubble-particle; Detachment; PIV-LIF; Machine learning; Image segmentation; SIZE; ATTACHMENT; COLUMN; NUMBER;
D O I
10.1016/j.powtec.2025.121245
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Turbulence is a critical factor inducing bubble-particle detachment, and investigating this mechanism is crucial for improving the flotation recovery of coarse particles. However, current research is constrained by the lack of synchronous measurement methods, causing most studies to analyze interface behavior and flow parameters separately, thereby limiting comprehensive insights into detachment processes. This study presents a novel method combining particle image velocimetry (PIV) and laser-induced fluorescence (LIF) with machine learningbased image segmentation to investigate detachment mechanisms in shear flow fields. The results demonstrate that this method enables real-time measurement of bubble-particle detachment while simultaneously capturing interface behavior and flow parameters. Furthermore, the study elucidates the shear detachment mechanism: lateral vortices dominate bubble deflection, whereas forward shear flow plays a crucial role in bubble detachment. This work provides a new method for bubble-particle detachment research and advances the understanding of turbulence-induced detachment mechanisms.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification [J].
Arganda-Carreras, Ignacio ;
Kaynig, Verena ;
Rueden, Curtis ;
Eliceiri, Kevin W. ;
Schindelin, Johannes ;
Cardona, Albert ;
Seung, H. Sebastian .
BIOINFORMATICS, 2017, 33 (15) :2424-2426
[2]   MudrockNet: Semantic segmentation of mudrock SEM images through deep learning [J].
Bihani, Abhishek ;
Daigle, Hugh ;
Santos, Javier E. ;
Landry, Christopher ;
Prodanovic, Masa ;
Milliken, Kitty .
COMPUTERS & GEOSCIENCES, 2022, 158
[3]  
Bröder D, 2002, EXP FLUIDS, V33, P826, DOI [10.1007/s00348-002-0502-Z, 10.1007/s00348-002-0502-z]
[4]   Image processing techniques for the measurement of two-phase bubbly pipe flows using particle image and tracking velocimetry (PIV/PTV) [J].
Cerqueira, R. F. L. ;
Paladino, E. E. ;
Ynumaru, B. K. ;
Maliska, C. R. .
CHEMICAL ENGINEERING SCIENCE, 2018, 189 :1-23
[5]   Two-Phase Stereo-PIV measurement techniques for Gas-Liquid Two-Phase flow - Methodology and validation [J].
Chen, Wuguang ;
Huang, Guangyuan ;
Hu, Yuanbiao ;
Song, Yuchen ;
Yin, Junlian ;
Wang, Dezhong .
CHEMICAL ENGINEERING SCIENCE, 2024, 288
[6]   Investigation of cell geometry effect on the turbulence characteristics and flotation performance using particle image velocimetry technique [J].
Darabi, Hossna ;
Koleini, Seyed Mohammad Javad ;
Soltani, Faraz ;
Abdollahy, Mahmoud ;
Ghadiri, Mahdi .
POWDER TECHNOLOGY, 2020, 376 :458-467
[7]   Investigation of bubble-particle attachment, detachment and collection efficiencies in a mechanical flotation cell [J].
Darabi, Hossna ;
Koleini, S. M. Javad ;
Deglon, David ;
Rezai, Bahram ;
Abdollahy, Mahmoud .
POWDER TECHNOLOGY, 2020, 375 :109-123
[8]   New insights into the role of nearby particles in bubble-particle detachment [J].
Ding, Shihao ;
Shi, Wenqing ;
Liu, Xinyu ;
Feng, Xin ;
Yang, Chao ;
Cao, Yijun ;
Gui, Xiahui ;
Xing, Yaowen .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 675
[9]  
Fujiwara A, 2004, EXP FLUIDS, V36, P157, DOI [10.1007/s00348-003-0691-0, 10.1007/S00348-003-0691-0]
[10]   Flotation froth image segmentation using Mask R-CNN [J].
Gharehchobogh, Behzad Karkari ;
Kuzekanani, Ziaddin Daie ;
Sobhi, Jafar ;
Khiavi, Abdolhamid Moallemi .
MINERALS ENGINEERING, 2023, 192