Statistical inference for the rough homogenization limit of multiscale fractional Ornstein-Uhlenbeck processes

被引:0
作者
Alonso-Martin, Pablo Ramses [1 ]
Boedihardjo, Horatio [1 ]
Papavasiliou, Anastasia [1 ]
机构
[1] Univ Warwick, Deparment Stat, Coventry, England
基金
英国工程与自然科学研究理事会;
关键词
multiscale fractional Ornstein-Uhlenbeck; spectral norm; fractional Brownian motion; fractional Gaussian noise; BROWNIAN-MOTION;
D O I
10.1214/25-ECP677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the problem of parameter estimation for the homogenization limit of multiscale systems involving fractional dynamics. In the case of stochastic multiscale systems driven by Brownian motion, it has been shown that in order for the Maximum Likelihood Estimators of the parameters of the limiting dynamics to be consistent, data needs to be subsampled at an appropriate rate. We extend these results to a class of fractional multiscale systems, often described as scaled fractional kinetic Brownian motions. We provide convergence results for the MLE of the diffusion coefficient of the limiting dynamics, computed using multiscale data. This requires the development of a different methodology to that used in the standard Brownian motion case, which is based on controlling the spectral norm of the inverse covariance matrix of a discretized fractional Gaussian noise on an interval.
引用
收藏
页数:14
相关论文
共 20 条
[1]  
Alonso-Martin Pablo Ramses, Supplement to "Statistical inference for the rough homogenization limit of multiscale fractional OrnsteinUhlenbeck processes, DOI [10.1214/25-ECP677SUPP, DOI 10.1214/25-ECP677SUPP]
[2]  
[Anonymous], 2010, The malliavin calculus and related topics
[3]   Multiple fractional integral with Hurst parameter less than 1/2 [J].
Bardina, X ;
Jolis, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (03) :463-479
[4]  
Biagini Francesca, 2010, Multidimensional stochastic processes as rough paths: Theory and applications
[5]  
Boufoussi Brahim, 2005, Revue Roumaine Mathematiques Pures Appliquees, V50
[6]   Typical dynamics and fluctuation analysis of slow-fast systems driven by fractional Brownian motion [J].
Bourguin, Solesne ;
Gailus, Siragan ;
Spiliopoulos, Konstantinos .
STOCHASTICS AND DYNAMICS, 2021, 21 (07)
[7]   DISCRETE-TIME INFERENCE FOR SLOW-FAST SYSTEMS DRIVEN BY FRACTIONAL BROWNIAN MOTION [J].
Bourguin, Solesne ;
Gailus, Siragan ;
Spiliopoulos, Konstantinos .
MULTISCALE MODELING & SIMULATION, 2021, 19 (03) :1333-1366
[8]   Exact asymptotics in eigenproblems for fractional Brownian covariance operators [J].
Chigansky, Pavel ;
Kleptsyna, Marina .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (06) :2007-2059
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]  
Friz P, 2015, T AM MATH SOC, V367, P7939