A Hybrid Quantum Machine Learning Model for Multi-class Classifier

被引:0
作者
Mondal, Bhaskar [1 ]
Kumar, Mandeep [1 ]
机构
[1] Natl Inst Technol Patna, Patna, Bihar, India
来源
ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2024, PT IV | 2025年 / 2336卷
关键词
Quantum entanglement; quantum machine learning; multi-class classification;
D O I
10.1007/978-3-031-83796-8_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum machine learning has gained attention due to the computational capabilities of quantum computers in solving complex problems that are challenging for classical computers. To increase processing power and efficiency, it integrates conventional machine learning approaches with quantum computing. The proposed model provide a hybrid quantum multi-class classifier that utilises quantum properties like superposition and entanglement. The Proposed model utilizes a unitary operation on a single qubit for state preparation, demonstrated on the IBMQX platform, and implemented on a quantum simulator for classification tasks. The protocol designed a quantum circuit for multi-class classification which is feasible to handle multiple classes. The experimental study of proposed model on iris dataset shows a promising accuracy of 96.26%, indicating the effectiveness of the QMCC model. The result obtained through qubit measurements, showcasing the effectiveness of the proposed model.
引用
收藏
页码:309 / 319
页数:11
相关论文
共 22 条
[1]   Quantum Boltzmann Machine [J].
Amin, Mohammad H. ;
Andriyash, Evgeny ;
Rolfe, Jason ;
Kulchytskyy, Bohdan ;
Melko, Roger .
PHYSICAL REVIEW X, 2018, 8 (02)
[2]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[3]   Quantum machine learning: a classical perspective [J].
Ciliberto, Carlo ;
Herbster, Mark ;
Ialongo, Alessandro Davide ;
Pontil, Massimiliano ;
Rocchetto, Andrea ;
Severini, Simone ;
Wossnig, Leonard .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2209)
[4]   Quantum convolutional neural networks [J].
Cong, Iris ;
Choi, Soonwon ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2019, 15 (12) :1273-+
[5]   Quantum-Enhanced Machine Learning [J].
Dunjko, Vedran ;
Taylor, Jacob M. ;
Briegel, Hans J. .
PHYSICAL REVIEW LETTERS, 2016, 117 (13)
[6]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[7]  
Gayathri Devi S., 2023, Quantum Computing: A Shift from Bits to Qubits, P265
[8]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[9]   Hierarchical quantum classifiers [J].
Grant, Edward ;
Benedetti, Marcello ;
Cao, Shuxiang ;
Hallam, Andrew ;
Lockhart, Joshua ;
Stojevic, Vid ;
Green, Andrew G. ;
Severini, Simone .
NPJ QUANTUM INFORMATION, 2018, 4
[10]   Supervised learning with quantum-enhanced feature spaces [J].
Havlicek, Vojtech ;
Corcoles, Antonio D. ;
Temme, Kristan ;
Harrow, Aram W. ;
Kandala, Abhinav ;
Chow, Jerry M. ;
Gambetta, Jay M. .
NATURE, 2019, 567 (7747) :209-212