Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension

被引:8
作者
Liu, Chih-Min [1 ,2 ,3 ]
Shih, Edward S. C. [4 ]
Chen, Jhih-Yu [4 ]
Huang, Chih-Han [4 ,5 ,6 ]
Wu, I. -Chien [7 ]
Chen, Pei-Fen [7 ]
Higa, Satoshi [8 ]
Yagi, Nobumori [9 ]
Hu, Yu-Feng [1 ,2 ,3 ,4 ]
Hwang, Ming-Jing [4 ,5 ,6 ]
Chen, Shih-Ann [1 ,2 ,3 ,10 ]
机构
[1] Taipei Vet Gen Hosp, Heart Rhythm Ctr, Dept Med, Div Cardiol, Taipei, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Clin Med, Taipei, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Fac Med, Taipei, Taiwan
[4] Acad Sinica, Inst Biomed Sci, 128 Sec 2,Acad Rd, Taipei 128, Taiwan
[5] Acad Sinica, Genome & Syst Biol Degree Program, Taipei, Taiwan
[6] Natl Taiwan Univ, Taipei, Taiwan
[7] Natl Hlth Res Inst, Inst Populat Hlth Sci, Miaoli, Taiwan
[8] Makiminato Cent Hosp, Div Cardiovasc Med, Cardiac Electrophysiol & Pacing Lab, Urasoe, Okinawa, Japan
[9] Nakagami Hosp, Div Cardiovasc Med, Okinawa, Okinawa, Japan
[10] Taichung Vet Gen Hosp, Cardiovasc Ctr, Taichung, Taiwan
来源
JACC-ASIA | 2022年 / 2卷 / 03期
关键词
all-cause mortality; artificial intelligence; cardiovascular mortality; deep learning; electrocardiogram; pulmonary hypertension; ARTERIAL-HYPERTENSION; SYSTEMIC-SCLEROSIS; RISK-ASSESSMENT; RIGHT-HEART; SURVIVAL; THERAPY; ADULTS;
D O I
10.1016/j.jacasi.2022.02.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Pulmonary hypertension is a disabling and life-threatening cardiovascular disease. Early detection of elevated pulmonary artery pressure (ePAP) is needed for prompt diagnosis and treatment to avoid detrimental consequences of pulmonary hypertension. OBJECTIVES This study sought to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model to identify patients with ePAP and related prognostic implications. METHODS From a hospital-based ECG database, the authors extracted the first pairs of ECG and transthoracic echocardiography taken within 2 weeks of each other from 41,097 patients to develop an AI model for detecting ePAP (PAP > 50 mm Hg by transthoracic echocardiography). The model was evaluated on independent data sets, including an external cohort of patients from Japan. RESULTS Tests of 10-fold cross-validation neural-network deep learning showed that the area under the receiver-operating characteristic curve of the AI model was 0.88 (sensitivity 81.0%; specificity 79.6%) for detecting ePAP. The diagnostic performance was consistent across age, sex, and various comorbidities (diagnostic odds ratio >8 for most factors examined). At 6-year follow-up, the patients predicted by the AI model to have ePAP were independently associated with higher cardiovascular mortality (HR: 3.69). Similar diagnostic performance and prediction for cardiovascular mortality could be replicated in the external cohort. CONCLUSIONS The ECG-based AI model identified patients with ePAP and predicted their future risk for cardiovascular mortality. This model could serve as a useful clinical test to identify patients with pulmonary hypertension so that treatment can be initiated early to improve their survival prognosis. (JACC: Asia 2022;2:258-270) (c) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:258 / 270
页数:13
相关论文
共 33 条
[1]   PULMONARY-HYPERTENSION PREDICTS MORTALITY AND MORBIDITY IN PATIENTS WITH DILATED CARDIOMYOPATHY [J].
ABRAMSON, SV ;
BURKE, JF ;
KELLY, JJ ;
KITCHEN, JG ;
DOUGHERTY, MJ ;
YIH, DF ;
MCGEEHIN, FC ;
SHUCK, JW ;
PHIAMBOLIS, TP .
ANNALS OF INTERNAL MEDICINE, 1992, 116 (11) :888-895
[2]   Risk assessment in pulmonary hypertension associated with heart failure and preserved ejection fraction [J].
Agarwal, Richa ;
Shah, Sanjiv J. ;
Foreman, Aimee J. ;
Glassner, Cherylanne ;
Bartolome, Sonja D. ;
Safdar, Zeenat ;
Coslet, Sandra L. ;
Anderson, Allen S. ;
Gomberg-Maitland, Mardi .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2012, 31 (05) :467-477
[3]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[4]   Predicting Survival in Patients With Pulmonary Arterial Hypertension The REVEAL Risk Score Calculator 2.0 and Comparison With ESC/ERS-Based Risk Assessment Strategies [J].
Benza, Raymond L. ;
Gomberg-Maitland, Mardi ;
Elliott, C. Greg ;
Farber, Harrison W. ;
Foreman, Aimee J. ;
Frost, Adaani E. ;
McGoon, Michael D. ;
Pasta, David J. ;
Selej, Mona ;
Burger, Charles D. ;
Frantz, Robert P. .
CHEST, 2019, 156 (02) :323-337
[6]   Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model [J].
Chen, Tsai-Min ;
Huang, Chih-Han ;
Shih, Edward S. C. ;
Hu, Yu-Feng ;
Hwang, Ming-Jing .
ISCIENCE, 2020, 23 (03)
[7]   Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study [J].
Coghlan, J. Gerry ;
Denton, Christopher P. ;
Gruenig, Ekkehard ;
Bonderman, Diana ;
Distler, Oliver ;
Khanna, Dinesh ;
Mueller-Ladner, Ulf ;
Pope, Janet E. ;
Vonk, Madelon C. ;
Doelberg, Martin ;
Chadha-Boreham, Harbajan ;
Heinzl, Harald ;
Rosenberg, Daniel M. ;
McLaughlin, Vallerie V. ;
Seibold, James R. .
ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 (07) :1340-1349
[8]   Worldwide Physician Education and Training in Pulmonary Hypertension Pulmonary Vascular Disease: The Global Perspective [J].
Elliott, C. Gregory ;
Barst, Robyn J. ;
Seeger, Werner ;
Porres-Aguilar, Mateo ;
Brown, Lynette M. ;
Zamanian, Roham T. ;
Rubin, Lewis J. .
CHEST, 2010, 137 (06) :85S-94S
[9]   2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS) Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) [J].
Galie, Nazzareno ;
Humbert, Marc ;
Vachiery, Jean-Luc ;
Gibbs, Simon ;
Lang, Irene ;
Torbicki, Adam ;
Simonneau, Gerald ;
Peacock, Andrew ;
Noordegraaf, Anton Vonk ;
Beghetti, Maurice ;
Ghofrani, Ardeschir ;
Gomez Sanchez, Miguel Angel ;
Hansmann, Georg ;
Klepetko, Walter ;
Lancellotti, Patrizio ;
Matucci, Marco ;
McDonagh, Theresa ;
Pierard, Luc A. ;
Trindade, Pedro T. ;
Zompatori, Maurizio ;
Hoeper, Marius .
EUROPEAN HEART JOURNAL, 2016, 37 (01) :67-+
[10]   Combination of Echocardiographic and Pulmonary Function Test Measures Improves Sensitivity for Diagnosis of Systemic Sclerosis-associated Pulmonary Arterial Hypertension: Analysis of 2 Cohorts [J].
Gladue, Heather ;
Steen, Virginia ;
Allanore, Yannick ;
Saggar, Rajeev ;
Saggar, Rajan ;
Maranian, Paul ;
Berrocal, Veronica J. ;
Avouac, Jerome ;
Meune, Christophe ;
Trivedi, Mona ;
Khanna, Dinesh .
JOURNAL OF RHEUMATOLOGY, 2013, 40 (10) :1706-1711