Parameterized Complexity of Path Set Packing

被引:2
作者
Aravind, N. R. [1 ]
Saxena, Roopam [1 ]
机构
[1] IIT Hyderabad, Dept Comp Sci & Engn, Hyderabad, India
来源
WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2023 | 2023年 / 13973卷
关键词
Path set packing; Set packing; Parameterized complexity; Fixed parameter tractability; Graph algorithms; EDGE INTERSECTION GRAPHS; ALGORITHM;
D O I
10.1007/978-3-031-27051-2_25
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In PATH SET PACKING, the input is an undirected graph G, a collection P of simple paths in G, and a positive integer k. The problem is to decide whether there exist k edge-disjoint paths in P. We study the parameterized complexity of PATH SET PACKING with respect to both natural and structural parameters. We show that the problem is W[1]-hard with respect to vertex cover plus the maximum length of a path in P, and W[1]-hard with respect to pathwidth plus maximum degree plus solution size. These results answer an open question raised in [17]. On the positive side, we present an FPT algorithm parameterized by feedback vertex set plus maximum degree, and also provide an FPT algorithm parameterized by treewidth plus maximum degree plus maximum length of a path in P.
引用
收藏
页码:291 / 302
页数:12
相关论文
共 17 条
[1]   An improved kernelization algorithm for r-Set Packing [J].
Abu-Khzam, Faisal N. .
INFORMATION PROCESSING LETTERS, 2010, 110 (16) :621-624
[2]   LINEAR TIME ALGORITHMS FOR NP-HARD PROBLEMS RESTRICTED TO PARTIAL K-TREES [J].
ARNBORG, S ;
PROSKUROWSKI, A .
DISCRETE APPLIED MATHEMATICS, 1989, 23 (01) :11-24
[3]   On independent set in B1-EPG graphs [J].
Bessy, Stephane ;
Bougeret, Marin ;
Chaplick, Steven ;
Goncalves, Daniel ;
Paul, Christophe .
DISCRETE APPLIED MATHEMATICS, 2020, 278 :62-72
[4]  
Cygan M., 2015, Parameterized Algorithms, V1st, DOI DOI 10.1007/978-3-319-21275-3
[5]  
Diestel R., 2017, GRAPH THEORY, V173, DOI 10.1007/978-3-662-53622-3
[6]  
Downey RG., 2012, MG COMP SCI
[7]  
Epstein Dror, 2013, Algorithms and Data Structures. 13th International Symposium, WADS 2013. Proceedings. LNCS 8037, P328, DOI 10.1007/978-3-642-40104-6_29
[8]   On the parameterized complexity of multiple-interval graph problems [J].
Fellows, Michael R. ;
Hermelin, Danny ;
Rosamond, Frances ;
Vialette, Stephane .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (01) :53-61
[9]   RECTILINEAR STEINER TREE PROBLEM IS NP-COMPLETE [J].
GAREY, MR ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :826-834
[10]   Edge Intersection Graphs of Single Bend Paths on a Grid [J].
Golumbic, Martin Charles ;
Lipshteyn, Marina ;
Stern, Michal .
NETWORKS, 2009, 54 (03) :130-138