Advances in human induced pluripotent stem cell (hiPSC)-based disease modelling in cardiogenetics

被引:0
作者
Seeger, Timon [1 ,2 ]
Hoffmann, Sandra [1 ,2 ,3 ]
机构
[1] Univ Hosp Heidelberg, Dept Med 3, Heidelberg, Germany
[2] German Ctr Cardiovasc Res DZHK, Partner Site Heidelberg Mannheim, Heidelberg, Germany
[3] Univ Hosp Heidelberg, Inst Human Genet, Heidelberg, Germany
关键词
hiPSCs; cardiogenetics; disease modelling; genome editing; cardiac tissue engineering; HYPERTROPHIC CARDIOMYOPATHY; CARDIAC MICROTISSUES; CARDIOMYOCYTES; MATURATION; CRISPR; DIFFERENTIATION; GENERATION; TISSUES; BASE; DNA;
D O I
10.1515/medgen-2025-2009
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Human induced pluripotent stem cell (hiPSC)-based disease modelling has significantly advanced the field of cardiogenetics, providing a precise, patient-specific platform for studying genetic causes of heart diseases. Coupled with genome editing technologies such as CRISPR/Cas, hiPSC-based models not only allow the creation of isogenic lines to study mutation-specific cardiac phenotypes, but also enable the targeted modulation of gene expression to explore the effects of genetic and epigenetic deficits at the cellular and molecular level.hiPSC-based models of heart disease range from two-dimensional cultures of hiPSC-derived cardiovascular cell types, such as various cardiomyocyte subtypes, endothelial cells, pericytes, vascular smooth muscle cells, cardiac fibroblasts, immune cells, etc., to cardiac tissue cultures including organoids, microtissues, engineered heart tissues, and microphysiological systems. These models are further enhanced by multi-omics approaches, integrating genomic, transcriptomic, epigenomic, proteomic, and metabolomic data to provide a comprehensive view of disease mechanisms.In particular, advances in cardiovascular tissue engineering enable the development of more physiologically relevant systems that recapitulate native heart architecture and function, allowing for more accurate modelling of cardiac disease, drug screening, and toxicity testing, with the overall goal of personalised medical approaches, where therapies can be tailored to individual genetic profiles.Despite significant progress, challenges remain in the maturation of hiPSC-derived cardiomyocytes and the complexity of reproducing adult heart conditions. Here, we provide a concise update on the most advanced methods of hiPSC-based disease modelling in cardiogenetics, with a focus on genome editing and cardiac tissue engineering.
引用
收藏
页码:137 / 146
页数:10
相关论文
共 106 条
[1]   A protocol for rapid pericyte differentiation of human induced pluripotent stem cells [J].
Aisenbrey, Elizabeth A. ;
Torr, Elizabeth ;
Johnson, Hunter ;
Soref, Cheryl ;
Daly, William ;
Murphy, William L. .
STAR PROTOCOLS, 2021, 2 (01)
[2]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[3]   Induced pluripotent stem cells: the new patient? [J].
Bellin, Milena ;
Marchetto, Maria C. ;
Gage, Fred H. ;
Mummery, Christine L. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2012, 13 (11) :713-726
[4]   Advances in 3D Bioprinted Cardiac Tissue Using Stem Cell-Derived Cardiomyocytes [J].
Bliley, Jacqueline M. ;
Stang, Maria A. ;
Behre, Anne ;
Feinberg, Adam W. .
STEM CELLS TRANSLATIONAL MEDICINE, 2024, 13 (05) :425-435
[5]   Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype [J].
Bliley, Jacqueline M. ;
Vermeer, Mathilde C. S. C. ;
Duffy, Rebecca M. ;
Batalov, Ivan ;
Kramer, Duco ;
Tashman, Joshua W. ;
Shiwarski, Daniel J. ;
Lee, Andrew ;
Teplenin, Alexander S. ;
Volkers, Linda ;
Coffin, Brian ;
Hoes, Martijn F. ;
Kalmykov, Anna ;
Palchesko, Rachelle N. ;
Sun, Yan ;
Jongbloed, Jan D. H. ;
Bomer, Nils ;
de Boer, Rudolf A. ;
Suurmeijer, Albert J. H. ;
Pijnappels, Daniel A. ;
Bolling, Maria C. ;
van der Meer, Peter ;
Feinberg, Adam W. .
SCIENCE TRANSLATIONAL MEDICINE, 2021, 13 (603)
[6]   Differentiation of cardiomyocytes and generation of human engineered heart tissue [J].
Breckwoldt, Kaja ;
Letuffe-Breniere, David ;
Mannhardt, Ingra ;
Schulze, Thomas ;
Ulmer, Baerbel ;
Werner, Tessa ;
Benzin, Anika ;
Klampe, Birgit ;
Reinsch, Marina C. ;
Laufer, Sandra ;
Shibamiya, Aya ;
Prondzynski, Maksymilian ;
Mearini, Giulia ;
Schade, Dennis ;
Fuchs, Sigrid ;
Neuber, Christiane ;
Kraemer, Elisabeth ;
Saleem, Umber ;
Schulze, Mirja L. ;
Rodriguez, Marita L. ;
Eschenhagen, Thomas ;
Hansen, Arne .
NATURE PROTOCOLS, 2017, 12 (06) :1177-1197
[7]   iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy [J].
Briganti, Francesca ;
Sun, Han ;
Wei, Wu ;
Wu, Jingyan ;
Zhu, Chenchen ;
Liss, Martin ;
Karakikes, Ioannis ;
Rego, Shannon ;
Cipriano, Andrea ;
Snyder, Michael ;
Meder, Benjamin ;
Xu, Zhenyu ;
Millat, Gilles ;
Gotthardt, Michael ;
Mercola, Mark ;
Steinmetz, Lars M. .
CELL REPORTS, 2020, 32 (10)
[8]  
Burridge PW, 2014, NAT METHODS, V11, P855, DOI [10.1038/NMETH.2999, 10.1038/nmeth.2999]
[9]   Differentiation and Functional Comparison of Monocytes and Macrophages from hiPSCs with Peripheral Blood Derivatives [J].
Cao, Xu ;
Yakala, Gopala K. ;
van den Hil, Francijna E. ;
Cochrane, Amy ;
Mummery, Christine L. ;
Orlova, Valeria V. .
STEM CELL REPORTS, 2019, 12 (06) :1282-1297
[10]   Modeling of Arrhythmogenic Right Ventricular Cardiomyopathy With Human Induced Pluripotent Stem Cells [J].
Caspi, Oren ;
Huber, Irit ;
Gepstein, Amira ;
Arbel, Gil ;
Maizels, Leonid ;
Boulos, Monther ;
Gepstein, Lior .
CIRCULATION-CARDIOVASCULAR GENETICS, 2013, 6 (06) :557-568