Minimal Sulfur-Grafted Graphite Anode with Accelerated Interfacial Kinetics for Fast-Charging Lithium-Ion Batteries

被引:0
作者
Ji, Yiwei [1 ]
Cen, Zongheng [1 ]
Yi, Tan [1 ]
Qiao, Xiaoyu [1 ]
Huang, Junlong [2 ]
Chen, Xuanhua [1 ]
Liu, Shaohong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, Minist Educ, Key Lab Polymer Composite & Funct Mat, Guangzhou 510006, Guangdong, Peoples R China
[2] Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai 9808577, Peoples R China
来源
CCS CHEMISTRY | 2025年
基金
中国国家自然科学基金;
关键词
artificial interphase coating; lithium-ion battery; solid electrolyte interphase; graphite anode; fast-charging; CHEMISTRY; DEFECT;
D O I
10.31635/ccschem.025.202505705
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The significant capacity decay and undesired metallic Li plating of graphite anode resulting from sluggish Li-ion diffusion kinetics at the graphite/electrolyte interface have largely hindered the fast-charging capability of lithium-ion batteries (LIBs). Herein, fast-charging LIBs have been demonstrated by homogeneously grafting minimal sulfur species on the surface of a graphite anode based on a topological defect-engineering strategy. The introduced topological defects in the carbon lattice of graphite provide numerous reactive C=C bonds, which enable homogeneous and covalent grafting of sulfur species on the surface of graphite via simple free radical reaction. The resultant ultrathin artificial interphase coating can be preferentially reduced to Li2S during initial cycling, leading to the formation of a high Li-ion conductive solid electrolyte interphase film with decreased Li-ion desolvation and transfer barrier. By integrating this artificial interphase coating, the graphite anode exhibits a remarkable 2.7-fold enhancement in reversible capacity at a 4 C rate while maintaining 94.1% capacity retention over 800 cycles under 1 C conditions. Furthermore, when paired with a LiNi0.8Co0.1Mn0.1O2 cathode, the minimal sulfur-grafted graphite anode also demonstrates exceptional fast-charging performance, reaching an 80% state of charge within 8.7 min at a 4 C charging rate.
引用
收藏
页数:12
相关论文
共 70 条
[1]   Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries [J].
Baek, Minsung ;
Kim, Jinyoung ;
Jin, Jaegyu ;
Choi, Jang Wook .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]  
Billaud J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.97, 10.1038/NENERGY.2016.97]
[3]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833
[4]  
Cao B., 2024, Carbon Future, V1, DOI DOI 10.26599/CF.2024.9200017
[5]   sp-carbon-enabled interface for high-performance graphite anode [J].
Chang, Qian ;
Li, Liang ;
Zuo, Zicheng ;
Li, Yuliang .
NANO TODAY, 2022, 44
[6]   Asymmetric ether solvents for high-rate lithium metal batteries [J].
Choi, Il Rok ;
Chen, Yuelang ;
Shah, Aditya ;
Florian, Jacob ;
Serrao, Chad ;
Holoubek, John ;
Lyu, Hao ;
Zhang, Elizabeth ;
Lee, Jun Ho ;
Lin, Yangju ;
Kim, Sang Cheol ;
Park, Hyunchang ;
Zhang, Pu ;
Lee, Junyoung ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
NATURE ENERGY, 2025, 10 (03) :365-379
[7]   Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries [J].
Ding, Xiaobo ;
Huang, Qianhui ;
Xiong, Xunhui .
ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (11)
[8]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[9]   Mechanistic study of DETA-modified CdS for carbon dioxide reduction [J].
Guo, Meiyan ;
Yang, Wanxiang ;
Li, Yi ;
Zhang, Yongfan ;
Lin, Wei .
CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (24) :7172-7181
[10]   Solid-state lithium batteries: Safety and prospects [J].
Guo, Yong ;
Wu, Shichao ;
He, Yan-Bing ;
Kang, Feiyu ;
Chen, Liquan ;
Li, Hong ;
Yang, Quan-Hong .
ESCIENCE, 2022, 2 (02) :138-163