Soliton solutions for time-fractional (3+1)-dimensional nonlinear Schrödinger equation with cubic-quintic nonlinearity terms

被引:0
作者
Mustafa, Mohammed A. [1 ]
Murad, Muhammad Amin S. [1 ]
机构
[1] Univ Duhok, Coll Sci, Dept Math, Duhok, Iraq
关键词
New direct mapping method; unified Riccati equation technique; conformable derivative; nonlinear Schr & ouml; dinger equations; nonlinear optics; 78-10;
D O I
10.1080/00207160.2025.2499879
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the time-fractional extended (3+1)-dimensional nonlinear conformable Schr & ouml;dinger equation in a dispersion and nonlinearity managed fiber laser. By utilizing the new direct mapping method and the unified Riccati equation technique, we derive various optical soliton solutions for the nonlinear Schr & ouml;dinger equation with conformable derivative. The importance of these newly constructed soliton solutions is demonstrated through contour, three-dimensional, and two-dimensional graphs, demonstrating dark, bell-shaped, bright, and wave soliton formation. Further, the effect of the fractional order parameter and the temporal parameter on these solutions is analyzed, offering valuable insights into the conformable nonlinear Schr & ouml;dinger model. The algorithms developed in this study hold promise for broader application across various nonlinear Schr & ouml;dinger equations in fields such as nonlinear optics and applied mathematics. Ultimately, this study deepens our understanding of nonlinear optics by uncovering new soliton dynamics and their governing mechanisms within dispersion and nonlinearity-managed fiber laser systems.
引用
收藏
页数:15
相关论文
共 40 条
[1]   Exploring the nonlinear behavior of solitary wave structure to the integrable Kairat-X equation [J].
Alammari, Maha ;
Iqbal, Mujahid ;
Faridi, Waqas Ali ;
Murad, Muhammad Amin S. ;
Algethamie, Reem ;
Alomari, Faizah A. H. ;
Alsubaie, Abdullah S. ;
Seadawy, Aly R. ;
Yaro, David .
AIP ADVANCES, 2024, 14 (11)
[2]  
Anderson D. R., 2019, J Fract Calc Appl, V10, P92
[3]   Modulation instability analysis and perturbed optical soliton and other solutions to the Gerdjikov-Ivanov equation in nonlinear optics [J].
Baskonus, Haci Mehmet ;
Younis, Muhammad ;
Bilal, Muhammad ;
Younas, Usman ;
Shafqat-ur-Rehman ;
Gao, Wei .
MODERN PHYSICS LETTERS B, 2020, 34 (35)
[4]  
Bekir A., 2022, PREPRINT, DOI [10.22541/au.164864681.13404176/v1, DOI 10.22541/AU.164864681.13404176/V1]
[5]  
Chakraverty S., 2024, Computation and Modeling for Fractional Order Systems
[6]   Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model [J].
Chen, Yu-Qiong ;
Tang, Yu-Hao ;
Manafian, Jalil ;
Rezazadeh, Hadi ;
Osman, M. S. .
NONLINEAR DYNAMICS, 2021, 105 (03) :2539-2548
[7]   Spatiotemporal Hermite-Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrodinger equation [J].
Dai, Chao-Qing ;
Wang, Yu ;
Liu, Jiu .
NONLINEAR DYNAMICS, 2016, 84 (03) :1157-1161
[8]   Physical structure and multiple solitary wave solutions for the nonlinear Jaulent-Miodek hierarchy equation [J].
Iqbal, Mujahid ;
Seadawy, Aly R. ;
Lu, Dianchen ;
Zhang, Zhengdi .
MODERN PHYSICS LETTERS B, 2024, 38 (16)
[9]   Method for finding optical solitons of generalized nonlinear Schrodinger equations [J].
Kudryashov, Nikolay A. .
OPTIK, 2022, 261
[10]   Method for finding highly dispersive optical solitons of nonlinear differential equations [J].
Kudryashov, Nikolay A. .
OPTIK, 2020, 206