On quasiconformal extension of harmonic mappings with nonzero pole

被引:0
作者
Bhowmik, Bappaditya [1 ]
Satpati, Goutam [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, India
关键词
Quasiconformal mappings; harmonic mappings; linearly connected domain; quasidisk;
D O I
10.5802/crmath.686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma(k)(H)(p) be the class of sense-preserving univalent harmonic mappings defined on the open unit disk D of the complex plane with a simple pole at z = p is an element of (0,1) that have k-quasiconformal extensions (0 <= k < 1) to the extended complex plane. We first derive a sufficient condition for harmonic mappings defined on D with pole at z = p is an element of (0,1) to belong in the class Sigma(k)(H)(p). As a consequence of this, we derive a convolution result involving functions in Sigma(k)(H)(i)(p), 0 <= k(i) < 1 for i=1,2. We also consider harmonic mappings with a nonzero pole defined on a linearly connected domain Omega subset of D and prove criteria for univalence and quasiconformal extensions for such mappings.
引用
收藏
页数:11
相关论文
共 15 条
[1]   QUASICONFORMAL REFLECTIONS [J].
AHLFORS, LV .
ACTA MATHEMATICA, 1963, 109 (3-4) :291-301
[2]   QUASICONFORMAL EXTENSION OF MEROMORPHIC FUNCTIONS WITH NONZERO POLE [J].
Bhowmik, B. ;
Satpati, G. ;
Sugawa, T. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) :2593-2601
[3]   AN AREA THEOREM FOR HARMONIC MAPPINGS WITH NONZERO POLE HAVING QUASICONFORMAL EXTENSIONS [J].
Bhowmik, Bappaditya ;
Satpati, Goutam .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) :3881-3891
[4]   Loewner chain and quasiconformal extension of some classes of univalent functions [J].
Bhowmik, Bappaditya ;
Satpati, Goutam .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (04) :544-557
[5]  
Duren P., 2004, CAMBRIDGE TRACTS MAT
[6]  
HENGARTNER W, 1987, T AM MATH SOC, V299, P1
[7]   QUASICONFORMAL EXTENSION OF HARMONIC MAPPINGS IN THE PLANE [J].
Hernandez, Rodrigo ;
Martin, Maria J. .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) :617-630
[8]   Explicit quasiconformal extensions and Lowner chains [J].
Hotta, Ikkei .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2009, 85 (08) :108-111
[9]   CONVOLUTION AND QUASICONFORMAL EXTENSION [J].
KRZYZ, JG .
COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (01) :99-104
[10]  
Lehto O., 1973, QUASICONFORMAL MAPPI, VSecond