Distinguishing different proteins based on terahertz spectra by visual geometry group 16 neural network

被引:1
作者
Chen, Yusa [1 ,2 ]
Huang, Xiwen [3 ]
Wu, Meizhang [4 ,5 ]
Hao, Jixuan [3 ]
Cao, Yunhao [1 ,2 ]
Sun, Hongshun [1 ,2 ]
Ma, Lijun [1 ,2 ]
Li, Liye [1 ,2 ]
Wu, Wengang [1 ,2 ]
Zhao, Guozhong [3 ]
Meng, Tianhua [6 ]
机构
[1] Natl Key Lab Adv Micro & Nano Manufacture Technol, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Integrated Circuits, Beijing 100871, Peoples R China
[3] Capital Normal Univ, Dept Phys, Beijing 100048, Peoples R China
[4] Beijing Informat Sci & Technol Univ, Sch Instrument Sci & Optoelect Engn, Beijing 100096, Peoples R China
[5] Univ Sci & Technol Beijing, Sch Automat, Beijing 100083, Peoples R China
[6] Shanxi Datong Univ, Inst Solid State Phys, Shanxi Prov Key Lab Microstruct Electromagnet Func, Datong 037009, Peoples R China
关键词
ENZYME REPLACEMENT THERAPY; FAULT-DIAGNOSIS; EXTRACTION;
D O I
10.1016/j.isci.2025.112148
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Detecting different kinds of proteins is of great significance for medical diagnosis, biological research, and other fields. We combine both terahertz (THz) absorption and refractive index spectra with the visual geometry group 16 (VGG-16) neural network to intelligently identify four proteins, namely albumin, collagen, pepsin, and pancreatin in this study. The THz absorption-refractive index spectra of the proteins were converted to two-dimensional image features by the Grassia angular summation field (GASF) method and used as a dataset, which enabled the VGG-16 model to achieve 98.8% accuracy in distinguishing the four proteins. We also compared the VGG-16 model with other machine learning models, which demonstrate that it has better performance. Overall, the VGG-16 neural network transfer learning technique proposed in this study can quickly and accurately achieve the identification of different kinds of proteins. This research might have potentially important applications in biotechnology fields, such as biosensors, biopharmaceuticals, and medicine.
引用
收藏
页数:14
相关论文
共 61 条
[1]  
Andreieva V., 2020, Generalization of cross-entropy loss function for image, DOI [10.18523/2617-7080320203-10, DOI 10.18523/2617-7080320203-10]
[2]   Malnutrition after pancreatic enzyme replacement therapy in chronic pancreatitis: Risk factors in real world practice [J].
Arutla, Madhulika ;
Sarkar, Subhaleena ;
Unnisa, Misbah ;
Sarkar, Priyanka ;
Raj, Merlin Annie ;
Mrudula, M. R. ;
Deepika, G. ;
Pasham, Sudhir ;
Jakkampudi, Aparna ;
Prasanna, Ambika ;
Reddy, D. Nageshwar ;
Talukdar, Rupjyoti .
PANCREATOLOGY, 2021, 21 (01) :34-41
[3]   Ensemble Deep Learning Models for Heart Disease Classification: A Case Study from Mexico [J].
Baccouche, Asma ;
Garcia-Zapirain, Begonya ;
Olea, Cristian Castillo ;
Elmaghraby, Adel .
INFORMATION, 2020, 11 (04)
[4]   Clinical Utility of Pepsin and Bile Acid in Tracheal Secretions for Accurate Diagnosis of Aspiration in ICU Patients [J].
Bandorski, Dirk ;
Tello, Khodr ;
Erdal, Harun ;
Sommerlad, Janine ;
Wilhelm, Jochen ;
Vadasz, Istvan ;
Hecker, Matthias ;
Walmrath, Dieter ;
Seeger, Werner ;
Krauss, Ekaterina ;
Kuhnert, Stefan .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (17)
[5]   High sensitivity five band tunable metamaterial absorption device based on block like Dirac semimetals [J].
Cheng, Shubo ;
Li, Wenxin ;
Zhang, Huafeng ;
Akhtar, Majid Niaz ;
Yi, Zao ;
Zeng, Qingdong ;
Ma, Can ;
Sun, Tangyou ;
Wu, Pinghui ;
Ahmad, Sohail .
OPTICS COMMUNICATIONS, 2024, 569
[6]   Material parameter estimation with terahertz time-domain spectroscopy [J].
Dorney, TD ;
Baraniuk, RG ;
Mittleman, DM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (07) :1562-1571
[7]   A reliable method for extraction of material parameters in terahertz time-domain spectroscopy [J].
Duvillaret, L ;
Garet, F ;
Coutaz, JL .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996, 2 (03) :739-746
[8]   Successful combination of benchtop nuclear magnetic resonance spectroscopy and chemometric tools: A review [J].
Galvan, Diego ;
Aguiar, Leticia Magalhaes de ;
Bona, Evandro ;
Marini, Federico ;
Killner, Mario Henrique M. .
ANALYTICA CHIMICA ACTA, 2023, 1273
[9]  
Hayrapetyan H, 2023, METHODS MOL BIOL, V2612, P1, DOI 10.1007/978-1-0716-2903-1_1
[10]   Research of Terahertz Time-Domain Spectral Identification Based on Deep Learning [J].
Hu Qi-feng ;
Cai Jian .
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41 (01) :94-99