ANALYTICAL CLASSIFICATION PERFORMANCE ANALYSIS OF MACHINE-LEARNING-BASED SHIP DETECTION FROM OPTICAL SATELLITE IMAGERY

被引:2
作者
Barretta, Domenico [1 ,2 ]
Millefiori, Leonardo M. [2 ]
Braca, Paolo [2 ]
机构
[1] Univ Campania L Vanvitelli, Dept Engn, Aversa, Italy
[2] NATO STO CMRE, Res Dept, La Spezia, Italy
来源
2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024) | 2024年
关键词
Statistical Hypothesis Testing; Machine Learning; Earth Observation; Ship Detection; Analytical Performance;
D O I
10.1109/IGARSS53475.2024.10642217
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We investigate the performance of machine learning (ML) binary classification models in terms of error probabilities to detect targets (specifically, ships) from optical satellite imagery. The ML approach uses a Data-Driven Decision Function (D3F), learned during training, as a decision statistic. Inspired by the Large Deviations Analysis (LDA), we observe that, under suitable conditions, the detection error probabilities decrease as the number of pixels occupied by the target(s) in the image increases. Coherent with the LDA, the D3F follows a Gaussian distribution, conditioned to parameters like the background. We propose a methodology to set a desired false alarm rate and estimate the correct decision probability, beneficial for various remote sensing applications, including maritime surveillance.
引用
收藏
页码:8861 / 8865
页数:5
相关论文
共 13 条
[1]   Statistical Hypothesis Testing Based on Machine Learning: Large Deviations Analysis [J].
Braca, Paolo ;
Millefiori, Leonardo M. ;
Aubry, Augusto ;
Marano, Stefano ;
De Maio, Antonio ;
Willett, Peter .
IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2022, 3 :464-495
[2]   Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities [J].
Cheng, Gong ;
Xie, Xingxing ;
Han, Junwei ;
Guo, Lei ;
Xia, Gui-Song .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :3735-3756
[3]   Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images [J].
Cui, Zongyong ;
Li, Qi ;
Cao, Zongjie ;
Liu, Nengyuan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11) :8983-8997
[4]   Convolutional Neural Network With Data Augmentation for SAR Target Recognition [J].
Ding, Jun ;
Chen, Bo ;
Liu, Hongwei ;
Huang, Mengyuan .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) :364-368
[5]   Next-Gen Intelligent Situational Awareness Systems for Maritime Surveillance and Autonomous Navigation [Point of View] [J].
Forti, Nicola ;
D'Afflisio, Enrica ;
Braca, Paolo ;
Millefiori, Leonardo M. ;
Willett, Peter .
PROCEEDINGS OF THE IEEE, 2022, 110 (10) :1532-1537
[6]   Vessel detection and classification from spaceborne optical images: A literature survey [J].
Kanjir, Urska ;
Greidanus, Harm ;
Ostir, Kristof .
REMOTE SENSING OF ENVIRONMENT, 2018, 207 :1-26
[7]   Object detection in optical remote sensing images: A survey and a new benchmark [J].
Li, Ke ;
Wan, Gang ;
Cheng, Gong ;
Meng, Liqiu ;
Han, Junwei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 159 :296-307
[8]   Deep learning in remote sensing applications: A meta-analysis and review [J].
Ma, Lei ;
Liu, Yu ;
Zhang, Xueliang ;
Ye, Yuanxin ;
Yin, Gaofei ;
Johnson, Brian Alan .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 152 :166-177
[9]   The Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve [J].
Mei, Song ;
Montanari, Andrea .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (04) :667-766
[10]   Extended Openmax Approach for the Classification of Radar Images With a Rejection Option [J].
Oveis, Amir Hossein ;
Giusti, Elisa ;
Ghio, Selenia ;
Martorella, Marco .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (01) :196-208