DeepAssembly2: A Web Server for Protein Complex Structure Assembly Based on Domain-Domain Interactions q

被引:1
作者
Xia, Yuhao [1 ]
Pu, Yilin [1 ]
Wang, Suhui [1 ]
Zhuang, Jianan [1 ]
Liu, Dong [1 ]
Hou, Minghua [1 ]
Zhang, Guijun [1 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
基金
国家重点研发计划;
关键词
protein structure prediction; protein complex; domain-domain interactions; inter-chain distance prediction; STRUCTURE PREDICTION;
D O I
10.1016/j.jmb.2025.169128
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proteins often perform biological functions by forming complexes, thereby accurately predicting the structure of protein complexes is crucial to understanding and mastering their functions, as well as facilitating drug discovery. Protein monomeric structure prediction has made a breakthrough in recent years, but the accurate prediction of complex structure remains a challenge. In this work, we present DeepAssembly2, a web server for automatically assembling protein complex structure based on domain-domain interactions. First, the features are constructed according to the input complex sequence and monomeric structures, then these features are used to predict the inter-chain residue distance through a deep learning model, and finally, the complex structure is assembled under the guidance of inter-chain residue distances. Compared with the previously developed version, DeepAssembly2 is trained on a newly constructed interchain domain-domain interaction dataset. Meanwhile, several important features have been added, such as Interface Residue Propensity and Ultrafast Shape Recognition. In addition, we introduced the interchain residue distance from the AlphaFold-Multimer model to further improve the accuracy. Finally, we also integrate our recently developed model quality assessment method to select the output models. The performance of DeepAssembly2 is significantly improved compared with the previous version, and it is expected to provide new insights and an effective tool for drug development, vaccine design, etc. The web server of DeepAssembly2 is freely available at https://zhanglab-bioinf.com/DeepAssembly/.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J].
Abramson, Josh ;
Adler, Jonas ;
Dunger, Jack ;
Evans, Richard ;
Green, Tim ;
Pritzel, Alexander ;
Ronneberger, Olaf ;
Willmore, Lindsay ;
Ballard, Andrew J. ;
Bambrick, Joshua ;
Bodenstein, Sebastian W. ;
Evans, David A. ;
Hung, Chia-Chun ;
O'Neill, Michael ;
Reiman, David ;
Tunyasuvunakool, Kathryn ;
Wu, Zachary ;
Zemgulyte, Akvile ;
Arvaniti, Eirini ;
Beattie, Charles ;
Bertolli, Ottavia ;
Bridgland, Alex ;
Cherepanov, Alexey ;
Congreve, Miles ;
Cowen-Rivers, Alexander I. ;
Cowie, Andrew ;
Figurnov, Michael ;
Fuchs, Fabian B. ;
Gladman, Hannah ;
Jain, Rishub ;
Khan, Yousuf A. ;
Low, Caroline M. R. ;
Perlin, Kuba ;
Potapenko, Anna ;
Savy, Pascal ;
Singh, Sukhdeep ;
Stecula, Adrian ;
Thillaisundaram, Ashok ;
Tong, Catherine ;
Yakneen, Sergei ;
Zhong, Ellen D. ;
Zielinski, Michal ;
Zidek, Augustin ;
Bapst, Victor ;
Kohli, Pushmeet ;
Jaderberg, Max ;
Hassabis, Demis ;
Jumper, John M. .
NATURE, 2024, 630 (8016) :493-500
[2]   Structure-based assembly of protein complexes in yeast [J].
Aloy, P ;
Böttcher, B ;
Ceulemans, H ;
Leutwein, C ;
Mellwig, C ;
Fischer, S ;
Gavin, AC ;
Bork, P ;
Superti-Furga, G ;
Serrano, L ;
Russell, RB .
SCIENCE, 2004, 303 (5666) :2026-2029
[3]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[4]   DockQ: A Quality Measure for Protein-Protein Docking Models [J].
Basu, Sankar ;
Wallner, Bjorn .
PLOS ONE, 2016, 11 (08)
[5]   Improved prediction of protein-protein interactions using AlphaFold2 [J].
Bryant, P. ;
Pozzati, G. ;
Elofsson, A. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   M-TASSER: An algorithm for protein quaternary structure prediction [J].
Chen, Huiling ;
Skolnick, Jeffrey .
BIOPHYSICAL JOURNAL, 2008, 94 (03) :918-928
[7]  
Evans Richard., 2021, bioRxiv, DOI [10.1101/2021.10.04.463034, DOI 10.1101/2021.10.04.463034]
[8]   Large-scale discovery of protein interactions at residue resolution using co-evolution calculated from genomic sequences [J].
Green, Anna G. ;
Elhabashy, Hadeer ;
Brock, Kelly P. ;
Maddamsetti, Rohan ;
Kohlbacher, Oliver ;
Marks, Debora S. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   DeepUMQA: ultrafast shape recognition-based protein model quality assessment using deep learning [J].
Guo, Sai-Sai ;
Liu, Jun ;
Zhou, Xiao-Gen ;
Zhang, Gui-Jun .
BIOINFORMATICS, 2022, 38 (07) :1895-1903
[10]   Protein Multiple Conformation Prediction Using Multi-Objective Evolution Algorithm [J].
Hou, Minghua ;
Jin, Sirong ;
Cui, Xinyue ;
Peng, Chunxiang ;
Zhao, Kailong ;
Song, Le ;
Zhang, Guijun .
INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2024, 16 (03) :519-531