Efficient Multistate Free-Energy Calculations with QM/MM Accuracy Using Replica-Exchange Enveloping Distribution Sampling

被引:0
作者
Pregeljc, Domen [1 ]
Hugli, Ramon J. R. [1 ]
Riniker, Sereina [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
HYDRATION FREE-ENERGIES; COMBINED AB-INITIO; MOLECULAR-DYNAMICS; FORCE-FIELDS; COMBINED QUANTUM; ENZYME-REACTIONS; SIMULATIONS; MODELS; COMPUTATION; MECHANICS;
D O I
10.1021/acs.jpcb.5c02086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Calculating free-energy differences using molecular dynamics (MD) simulations is an important task in computational chemistry. In practice, the accuracy of the results is limited by model approximations and insufficient phase-space sampling due to limited computational resources. In the present work, we address these challenges by integrating the quantum-mechanical/molecular-mechanical (QM/MM) scheme with replica-exchange enveloping distribution sampling (RE-EDS) to obtain a multistate and multiscale free-energy method with high computational efficiency. The performance of QM/MM RE-EDS is showcased by calculating hydration free energies for three data sets using semiempirical methods for the QM zone. We highlight the importance of the choice of QM Hamiltonian and the effect of the compatibility between the QM and MM models. Especially the choice of semiempirical method has a substantial effect on the accuracy compared to experiment, but also the choice of MM water model is non-negligible. Our findings indicate that RE-EDS is an efficient approach for calculating free-energy differences with a QM/MM scheme, and lays the foundation for future developments and applications.
引用
收藏
页码:5948 / 5960
页数:13
相关论文
共 116 条
[1]  
[Anonymous], 1895, Proceedings of the Royal Society of London, DOI 10.1098/rspl.1895.0041
[2]   Hybrid models for combined quantum mechanical and molecular mechanical approaches [J].
Bakowies, D ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10580-10594
[3]   Extendedtight-bindingquantum chemistry methods [J].
Bannwarth, Christoph ;
Caldeweyher, Eike ;
Ehlert, Sebastian ;
Hansen, Andreas ;
Pracht, Philipp ;
Seibert, Jakob ;
Spicher, Sebastian ;
Grimme, Stefan .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (02)
[4]   GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions [J].
Bannwarth, Christoph ;
Ehlert, Sebastian ;
Grimme, Stefan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (03) :1652-1671
[5]  
Beauchamp K. A., 2008, PYTHON IMPLEMENTATIO
[6]   Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive [J].
Beauchamp, Kyle A. ;
Behr, Julie M. ;
Rustenburg, Arien S. ;
Bayly, Christopher I. ;
Kroenlein, Kenneth ;
Chodera, John D. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (40) :12912-12920
[7]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]   The future of molecular dynamics simulations in drug discovery [J].
Borhani, David W. ;
Shaw, David E. .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2012, 26 (01) :15-26
[10]   A generally applicable atomic-charge dependent London dispersion correction [J].
Caldeweyher, Eike ;
Ehlert, Sebastian ;
Hansen, Andreas ;
Neugebauer, Hagen ;
Spicher, Sebastian ;
Bannwarth, Christoph ;
Grimme, Stefan .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (15)