Purpose of reviewThis article reviews the mechanisms, advancements, and potential implications of clustered regularly interspaced short palindromic repeats-associated (CRISPR-Cas) gene editing technology, with a specific focus on its applications in reproductive biology and assisted reproduction. It aims to explore the benefits and challenges of integrating this revolutionary technology into clinical and research settings.Recent findingsCRISPR-Cas9 is a transformative tool for precise genome editing, enabling targeted modifications through mechanisms like nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Innovations such as Cas9 nickase and dCas9 systems have improved specificity and expanded applications, including gene activation, repression, and epigenetic modifications. In reproductive research, CRISPR has facilitated gene function studies, corrected genetic mutations in animal models, and demonstrated potential in addressing human infertility and hereditary disorders. Emerging applications include mitochondrial genome editing, population control of disease vectors via gene drives, and detailed analyses of epigenetic mechanisms.SummaryCRISPR-Cas9 technology has revolutionized genetic engineering by enabling precise genome modifications. This article discusses its mechanisms, focusing on the repair pathways (NHEJ and HDR) and methods to mitigate off-target effects. In reproductive biology, CRISPR has advanced our understanding of fertility genes, allowed corrections of hereditary mutations, and opened avenues for novel therapeutic strategies. While its clinical application in human-assisted reproduction faces ethical and safety challenges, ongoing innovations hold promise for broader biomedical applications.