An Online Paleoclimate Data Assimilation With a Deep Learning-Based Network

被引:0
作者
Sun, Haohao [1 ,2 ]
Lei, Lili [1 ,2 ,3 ]
Liu, Zhengyu [4 ]
Ning, Liang [5 ,6 ]
Tan, Zhe-Min [1 ,2 ]
机构
[1] Nanjing Univ, Key Lab Mesoscale Severe Weather, Minist Educ, Nanjing, Peoples R China
[2] Nanjing Univ, Sch Atmospher Sci, Nanjing, Peoples R China
[3] Nanjing Univ, Frontiers Sci Ctr Crit Earth Mat Cycling, Nanjing, Peoples R China
[4] Ohio State Univ, Dept Geog, Columbus, OH USA
[5] Nanjing Normal Univ, Minist Educ, Key Lab Virtual Geog Environm, Nanjing, Peoples R China
[6] Nanjing Normal Univ, Sch Geog, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
data assimilation; deep learning; paleoclimate reconstruction; TEMPERATURE PATTERNS; CLIMATE MODELS; REANALYSIS; WEATHER; RECONSTRUCTIONS; INFLATION; FIELDS; TIME;
D O I
10.1029/2024MS004675
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
An online paleoclimate data assimilation (PDA) that utilizes climate forecasts from a deep learning-based network (NET) along with assimilation of proxies to reconstruct surface air temperature, is investigated here. The NET is trained on ensemble simulations from the Community Earth System Model-Last Millennium Ensemble. Due to the nonlinear features with high-dimensional input, NET gains better predictive skills compared to the linear inverse model (LIM) in a reduced empirical orthogonal function (EOF) space. Thus, an alternative for online PDA is to couple the NET with the integrated hybrid ensemble Kalman filter (IHEnKF). Moreover, an analog blending strategy is proposed to increase ensemble spread and mitigate filter divergence, which blends the analog ensembles selected from climatological samples based on proxies and cycling ensembles advanced by NET. To account for the underestimated uncertainties of real proxy data, an observation error inflation method is applied, which inflates the proxy error variance based on the comparison between the estimated proxy error variance and its climatological innovation. Consistent results are obtained from the pseudoproxy experiments and the real proxy experiments. The more informative ensemble priors from the online PDA using NET enhance the reconstructions than the online PDA using LIM, and both outperform the offline PDA with randomly sampled climatological ensemble priors. The advantages of online PDA with NET over the online PDA with LIM and offline PDA become more pronounced, as the proxy data become sparser.
引用
收藏
页数:19
相关论文
共 68 条
[1]   Spatially and temporally varying adaptive covariance inflation for ensemble filters [J].
Anderson, Jeffrey L. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2009, 61 (01) :72-83
[2]  
[Anonymous], **DATA OBJECT**, DOI [10.6084/m9.figshare.c.3285353, 10.5281/zenodo.13363823]
[3]   An ensemble-based approach to climate reconstructions [J].
Bhend, J. ;
Franke, J. ;
Folini, D. ;
Wild, M. ;
Broennimann, S. .
CLIMATE OF THE PAST, 2012, 8 (03) :963-976
[4]   Accurate medium-range global weather forecasting with 3D neural networks [J].
Bi, Kaifeng ;
Xie, Lingxi ;
Zhang, Hengheng ;
Chen, Xin ;
Gu, Xiaotao ;
Tian, Qi .
NATURE, 2023, 619 (7970) :533-+
[5]   Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model [J].
Brajard, Julien ;
Carrassi, Alberto ;
Bocquet, Marc ;
Bertino, Laurent .
JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 44
[6]  
Clevert DA, 2016, Arxiv, DOI arXiv:1511.07289
[7]   The Twentieth Century Reanalysis Project [J].
Compo, G. P. ;
Whitaker, J. S. ;
Sardeshmukh, P. D. ;
Matsui, N. ;
Allan, R. J. ;
Yin, X. ;
Gleason, B. E., Jr. ;
Vose, R. S. ;
Rutledge, G. ;
Bessemoulin, P. ;
Broennimann, S. ;
Brunet, M. ;
Crouthamel, R. I. ;
Grant, A. N. ;
Groisman, P. Y. ;
Jones, P. D. ;
Kruk, M. C. ;
Kruger, A. C. ;
Marshall, G. J. ;
Maugeri, M. ;
Mok, H. Y. ;
Nordli, O. ;
Ross, T. F. ;
Trigo, R. M. ;
Wang, X. L. ;
Woodruff, S. D. ;
Worley, S. J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (654) :1-28
[8]   Scale-Dependent Inflation Algorithms for Ensemble Kalman Filters [J].
Deng, Junjie ;
Lei, Lili ;
Tan, Zhe-min ;
Zhang, Yi .
MONTHLY WEATHER REVIEW, 2024, 152 (12) :2609-2622
[9]   Toward the assimilation of time-averaged observations [J].
Dirren, S ;
Hakim, GJ .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (04) :1-5
[10]   An assessment of particle filtering methods and nudging for climate state reconstructions [J].
Dubinkina, S. ;
Goosse, H. .
CLIMATE OF THE PAST, 2013, 9 (03) :1141-1152