Nonlinear Convection in an Inclined Porous Layer Saturated by Casson Fluid with a Magnetic Effect

被引:0
作者
Raju, S. Suresh Kumar [1 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, AL Asha 31982, Saudi Arabia
关键词
nonlinear stability; inclined porous layer; magnetic field; Casson fluid; BENARD CONVECTION; STRESS; ONSET; FLOW;
D O I
10.3390/axioms14050384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study examines the onset of magnetoconvection in a Casson fluid-saturated inclined porous layer. Oberbeck-Boussinesq approximation and Darcy law employed to characterize the fluid motion. The stability of the system is examined using both linear and nonlinear stability theories. A basic solution of the governing equation is determined. The linear instability is studied by employing disturbances to the basic flow. The nonlinear instability is analyzed utilizing the energy method. The solution to the eigenvalue problem is derived using the bvp4c routine in MATLAB R2023a. This study evaluates the influence of nondimensional parameters specifically, the Hartmann number, Casson parameter, and inclination angle on both linear and nonlinear instability. The Casson parameter destabilizes the system, whereas the Hartmann number and inclination angle stabilize it. Transverse rolls exhibit greater stability compared to longitudinal rolls. Changes in the Casson parameter significantly affect the presence or absence of transverse rolls; as its value changes, so does the disappearance of transverse rolls.
引用
收藏
页数:11
相关论文
共 29 条
[1]   Rayleigh-Benard convection of a viscoplastic liquid in a trapezoidal enclosure [J].
Aghighi, M. S. ;
Ammar, A. ;
Masoumi, H. ;
Lanjabi, A. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 180
[2]   Rayleigh-Benard convection of Casson fluids [J].
Aghighi, M. S. ;
Ammar, A. ;
Metivier, C. ;
Gharagozlu, M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 127 :79-90
[3]  
Astarita G., 1974, Principles of Non-Newtonian Fluid Mechanics
[4]   Thermoconvective instabilities in an inclined porous channel heated from below [J].
Barletta, A. ;
Storesletten, L. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (13-14) :2724-2733
[5]   NATURAL-CONVECTION IN A SLOPING POROUS LAYER [J].
BORIES, SA ;
COMBARNOUS, MA .
JOURNAL OF FLUID MECHANICS, 1973, 57 (JAN23) :63-+
[6]   SOLUTIONS AND STABILITY-CRITERIA OF NATURAL CONVECTIVE FLOW IN AN INCLINED POROUS LAYER [J].
CALTAGIRONE, JP ;
BORIES, S .
JOURNAL OF FLUID MECHANICS, 1985, 155 (JUN) :267-287
[7]  
Casson N., 1959, RHEOLOGY DISPERSE SY, P84, DOI DOI 10.1002/9781444391060
[9]   Route to hyperchaos in Rayleigh-Benard convection [J].
Chertovskih, R. ;
Chimanski, E. V. ;
Rempel, E. L. .
EPL, 2015, 112 (01)
[10]  
CHEVALLEY J, 1975, Journal of Texture Studies, V6, P177, DOI 10.1111/j.1745-4603.1975.tb01247.x