共 70 条
Modelling low-dimensional interacting brain networks reveals organising principle in human cognition
被引:0
作者:
Perl, Yonatan Sanz
[1
,2
,3
]
Geli, Sebastian
[1
]
Perez-Ordoyo, Eider
[1
]
Zonca, Lou
[1
]
Idesis, Sebastian
[1
]
Vohryzek, Jakub
[1
]
Jirsa, Viktor K.
[4
]
Kringelbach, Morten L.
[5
,6
,7
,8
]
Tagliazucchi, Enzo
[2
,9
]
Deco, Gustavo
[1
,10
,11
]
机构:
[1] Univ Pompeu Fabra, Ctr Brain & Cognit, Computat Neurosci Grp, Barcelona, Spain
[2] Natl Sci & Tech Res Council CONICET, Buenos Aires, Argentina
[3] Paris Brain Inst ICM, Paris, France
[4] Aix Marseille Univ, Inst Neurosci Syst, Marseille, France
[5] Univ Oxford, Dept Psychiat, Oxford, England
[6] Aarhus Univ, Ctr Mus Brain, Dept Clin Med, Aarhus, Denmark
[7] Univ Minho, Life & Hlth Sci Res Inst ICVS, Sch Med, Braga, Portugal
[8] Univ Oxford, Ctr Eudaimonia & Human Flourishing, Oxford, England
[9] Univ Adolfo Ibanez, Latin Amer Brain Hlth Inst BrainLat, Santiago, Chile
[10] Univ Pompeu Fabra, Dept Informat & Commun Technol, Barcelona, Spain
[11] Inst Catalana Recerca & Estudis Avancats ICREA, Barcelona, Spain
基金:
新加坡国家研究基金会;
关键词:
Whole-brain modelling;
Low-dimensional manifold;
Human cognition;
Nonequilibrium dynamics;
RESTING-STATE NETWORKS;
HUMAN CEREBRAL-CORTEX;
HUMAN CONNECTOME;
FUNCTIONAL CONNECTIVITY;
DYNAMICS;
FMRI;
INFORMATION;
ORGANIZATION;
SYSTEM;
D O I:
10.1162/netn_a_00434
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
The discovery of resting-state networks has greatly influenced the investigation of brain functioning, shifting the focus from local regions involved in cognitive tasks to the ongoing spontaneous dynamics in global networks. This research goes beyond that shift and proposes investigating how human cognition is shaped by the interactions between whole-brain networks embedded in a low-dimensional manifold space. To achieve this, a combination of deep variational autoencoders with computational modelling is used to construct a dynamic model of brain networks, fitted to whole-brain dynamics measured with functional magnetic resonance imaging (fMRI). The results show that during cognitive tasks, highly flexible reconfigurations of task-driven network interaction patterns occur, and these patterns, in turn, can be used to accurately classify different cognitive tasks. Importantly, using this low-dimensional whole-brain network model provides significantly better results than working in the conventional brain space.
引用
收藏
页码:661 / 681
页数:21
相关论文