Novel machine learning models for the prediction of acute respiratory distress syndrome after liver transplantation

被引:0
作者
Wu, Weijie [1 ,2 ]
Zhang, Zheng [1 ]
Wang, Shuailei [1 ]
Xin, Ru [1 ]
Yang, Dong [3 ]
Yao, Weifeng [1 ]
Hei, Ziqing [1 ]
Chen, Chaojin [1 ]
Luo, Gangjian [1 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Anesthesiol, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 7, Dept Anesthesiol, Shenzhen, Peoples R China
[3] Guangzhou AID Cloud Technol Co LTD, Guangzhou, Peoples R China
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2025年 / 8卷
基金
中国国家自然科学基金;
关键词
liver transplantation; acute respiratory distress syndrome; machine learning; prediction model; random forest; ARTIFICIAL-INTELLIGENCE; COMPLICATIONS;
D O I
10.3389/frai.2025.1548131
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early prediction of acute respiratory distress syndrome (ARDS) after liver transplantation (LT) facilitates timely intervention. We aimed to develop a predictor of post-LT ARDS using machine learning (ML) methods. Data from 755 patients in the internal validation set and 115 patients in the external validation set were retrospectively reviewed, covering demographics, etiology, medical history, laboratory results, and perioperative data. According to the area under the receiver operating characteristic curve (AUROC), accuracy, specificity, sensitivity, and F1-value, the prediction performance of seven ML models, including logistic regression (LR), decision tree, random forest (RF), gradient boosting decision tree (GBDT), na & iuml;ve bayes (NB), light gradient boosting machine (LGBM) and extreme gradient boosting (XGB) were evaluated and compared with acute lung injury prediction scores (LIPS). 234 (30.99%) ARDS patients were diagnosed. The RF model had the best performance, with an AUROC of 0.766 (accuracy: 0.722, sensitivity: 0.617) in the internal validation set and a comparable AUROC of 0.844 (accuracy: 0.809, sensitivity: 0.750) in the external validation set. The performance of all ML models was better than LIPS (AUROC 0.692, 0.776). The predictor variables included the age of the recipient, BMI, MELD score, total bilirubin, prothrombin time, operation time, standard urine volume, total intake volume, and red blood cell infusion volume. We firstly developed a risk predictor of post-LT ARDS based on RF model to ameliorate clinical practice.
引用
收藏
页数:12
相关论文
共 37 条
[1]   Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron [J].
Abdullah, Monir .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
[2]   Multicollinearity in Logistic Regression Models [J].
Bayman, Emine Ozgur ;
Dexter, Franklin .
ANESTHESIA AND ANALGESIA, 2021, 133 (02) :362-365
[3]   Decision trees and random forests [J].
Becker, Thijs ;
Rousseau, Axel-Jan ;
Geubbelmans, Melvin ;
Burzykowski, Tomasz ;
Valkenborg, Dirk .
AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (06) :894-897
[4]   Artificial intelligence, machine learning, and deep learning in liver transplantation [J].
Bhat, Mamatha ;
Rabindranath, Madhumitha ;
Chara, Beatriz Sordi ;
Simonetto, Douglas A. .
JOURNAL OF HEPATOLOGY, 2023, 78 (06) :1216-1233
[5]   Construction of a prediction and visualization system for cognitive impairment in elderly COPD patients based on self-assigning feature weights and residual evolution model [J].
Cheng, Wenwen ;
Yu, Chen ;
Liu, Xiaohui .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 8
[7]   Early respiratory complications after liver transplantation [J].
Feltracco, Paolo ;
Carollo, Cristiana ;
Barbieri, Stefania ;
Pettenuzzo, Tommaso ;
Ori, Carlo .
WORLD JOURNAL OF GASTROENTEROLOGY, 2013, 19 (48) :9271-9281
[8]   Acute Respiratory Distress Syndrome 2022 2 Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management [J].
Gorman, Ellen A. ;
O'Kane, Cecilia M. ;
McAuley, Daniel F. .
LANCET, 2022, 400 (10358) :1157-1170
[9]   The promise of machine learning applications in solid organ transplantation [J].
Gotlieb, Neta ;
Azhie, Amirhossein ;
Sharma, Divya ;
Spann, Ashley ;
Suo, Nan-Ji ;
Tran, Jason ;
Orchanian-Cheff, Ani ;
Wang, Bo ;
Goldenberg, Anna ;
Chasse, Michael ;
Cardinal, Heloise ;
Cohen, Joseph Paul ;
Lodi, Andrea ;
Dieude, Melanie ;
Bhat, Mamatha .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[10]   ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies [J].
Grasselli, Giacomo ;
Calfee, Carolyn S. ;
Camporota, Luigi ;
Poole, Daniele ;
Amato, Marcelo B. P. ;
Antonelli, Massimo ;
Arabi, Yaseen M. ;
Baroncelli, Francesca ;
Beitler, Jeremy R. ;
Bellani, Giacomo ;
Bellingan, Geoff ;
Blackwood, Bronagh ;
Bos, Lieuwe D. J. ;
Brochard, Laurent ;
Brodie, Daniel ;
Burns, Karen E. A. ;
Combes, Alain ;
D'Arrigo, Sonia ;
De Backer, Daniel ;
Demoule, Alexandre ;
Einav, Sharon ;
Fan, Eddy ;
Ferguson, Niall D. ;
Frat, Jean-Pierre ;
Gattinoni, Luciano ;
Guerin, Claude ;
Herridge, Margaret S. ;
Hodgson, Carol ;
Hough, Catherine L. ;
Jaber, Samir ;
Juffermans, Nicole P. ;
Karagiannidis, Christian ;
Kesecioglu, Jozef ;
Kwizera, Arthur ;
Laffey, John G. ;
Mancebo, Jordi ;
Matthay, Michael A. ;
McAuley, Daniel F. ;
Mercat, Alain ;
Meyer, Nuala J. ;
Moss, Marc ;
Munshi, Laveena ;
Myatra, Sheila N. ;
Ng Gong, Michelle ;
Papazian, Laurent ;
Patel, Bhakti K. ;
Pellegrini, Mariangela ;
Perner, Anders ;
Pesenti, Antonio ;
Piquilloud, Lise .
INTENSIVE CARE MEDICINE, 2023, 49 (07) :727-759