Global Existence and Uniqueness of Pathwise Solution to the Stochastic 2D Inviscid Boussinesq Equations

被引:0
作者
Zhang, Shijia [1 ]
Zhou, Guoli [1 ]
机构
[1] Chongqing Univ, Sch Stat & Math, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Boussinesq equations; Regularity; Gevrey spaces; WELL-POSEDNESS; REGULARITY; SYSTEM;
D O I
10.1007/s40304-024-00431-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Global well-posedness of 2D inviscid Boussinesq equations is unsolved. In the present work, we find that if this inviscid hydrodynamics equation is perturbed by noise, the global well-posedness holds in high probability with initial data satisfies a certain Gevrey-type bound. Moreover, the unique global solution to the stochastic inviscid 2D Boussinesq equation is bounded by the initial data.
引用
收藏
页数:28
相关论文
共 32 条
[1]   Global regularity results for the 2D Boussinesq equations with partial dissipation [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Shang, Haifeng ;
Wu, Jiahong ;
Xu, Xiaojing ;
Ye, Zhuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :1893-1917
[2]   Global regularity results for the 2D Boussinesq equations with vertical dissipation [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) :1637-1655
[3]   On the Well-Posedness of Stochastic Boussinesq Equations with Transport Noise [J].
Alonso-Oran, Diego ;
Bethencourt de Leon, Aythami .
JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (01) :175-224
[4]  
Bnard M., 1901, Ann. Chim. Phys, V23, P62
[5]  
Boussinesq J.V., 1897, Des comptes rendus des seances des sciences
[6]  
Brzezniak Z., 2011, Glob. Stoch. Anal, V1, P175
[7]   The Surface Quasi-geostrophic Equation With Random Diffusion [J].
Buckmaster, Tristan ;
Nahmod, Andrea ;
Staffilani, Gigliola ;
Widmayer, Klaus .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (23) :9370-9385
[8]  
Busse F.H., 1989, FUNDAMENTALS THERMAL
[9]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[10]   Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces [J].
Danchin, Raphael ;
Paicu, Marius .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) :1444-1460