PLM-SLAM: Enhanced Visual SLAM for Mobile Robots in Indoor Dynamic Scenes Leveraging Point-Line Features and Manhattan World Model

被引:1
作者
Liu, Jiale [1 ]
Luo, Jingwen [1 ,2 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Peoples R China
[2] Engn Res Ctr Comp Vis & Intelligent Control Techno, Dept Educ Yunnan Prov, Kunming 650500, Peoples R China
关键词
indoor dynamic scenes; mobile robot; visual SLAM; point-line features; Manhattan worlds; RGB-D SLAM; SEGMENT DETECTOR; MOTION REMOVAL; ROBUST; ENVIRONMENTS; EFFICIENT;
D O I
10.3390/electronics13234592
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an enhanced visual simultaneous localization and mapping (vSLAM) algorithm tailored for mobile robots operating in indoor dynamic scenes. By incorporating point-line features and leveraging the Manhattan world model, the proposed PLM-SLAM framework significantly improves localization accuracy and map consistency. This algorithm optimizes the line features detected by the Line Segment Detector (LSD) through merging and pruning strategies, ensuring real-time performance. Subsequently, dynamic point-line features are rejected based on Lucas-Kanade (LK) optical flow, geometric constraints, and depth information, minimizing the impact of dynamic objects. The Manhattan world model is then utilized to reduce rotational estimation errors and optimize pose estimation. High-precision line feature matching and loop closure detection mechanisms further enhance the robustness and accuracy of the system. Experimental results demonstrate the superior performance of PLM-SLAM, particularly in high-dynamic indoor environments, outperforming existing state-of-the-art methods.
引用
收藏
页数:28
相关论文
共 55 条
[31]   Accurate Visual-Inertial SLAM by Manhattan Frame Re-identification [J].
Peng, Xiongfeng ;
Liu, Zhihua ;
Wang, Qiang ;
Kim, Yun-Tae ;
Lee, Hong-Seok .
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, :5418-5424
[32]  
Pumarola A., 2017, 2017 IEEE INT C ROB, P4503, DOI [10.1109/ICRA.2017.7989522, DOI 10.1109/ICRA.2017.7989522]
[33]   VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator [J].
Qin, Tong ;
Li, Peiliang ;
Shen, Shaojie .
IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (04) :1004-1020
[34]  
Shimamura Jun., 2011, P MVA NAR JAP 13 15, P344
[35]  
Sturm J, 2012, IEEE INT C INT ROBOT, P573, DOI 10.1109/IROS.2012.6385773
[36]   Motion removal for reliable RGB-D SLAM in dynamic environments [J].
Sun, Yuxiang ;
Liu, Ming ;
Meng, Max Q. -H. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 108 :115-128
[37]   Improving RGB-D SLAM in dynamic environments: A motion removal approach [J].
Sun, Yuxiang ;
Liu, Ming ;
Meng, Max Q. -H. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 89 :110-122
[38]   PLI-SLAM: A Tightly-Coupled Stereo Visual-Inertial SLAM System with Point and Line Features [J].
Teng, Zhaoyu ;
Han, Bin ;
Cao, Jie ;
Hao, Qun ;
Tang, Xin ;
Li, Zhaoyang .
REMOTE SENSING, 2023, 15 (19)
[39]   ARD-SLAM: Accurate and robust dynamic SLAM using dynamic object identification and improved multi-view geometrical approaches [J].
Ul Islam, Qamar ;
Ibrahim, Haidi ;
Chin, Pan Kok ;
Lim, Kevin ;
Abdullah, Mohd Zaid ;
Khozaei, Fatemeh .
DISPLAYS, 2024, 82
[40]   LSD: A Fast Line Segment Detector with a False Detection Control [J].
von Gioi, Rafael Grompone ;
Jakubowicz, Jeremie ;
Morel, Jean-Michel ;
Randall, Gregory .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (04) :722-732