PLM-SLAM: Enhanced Visual SLAM for Mobile Robots in Indoor Dynamic Scenes Leveraging Point-Line Features and Manhattan World Model

被引:1
作者
Liu, Jiale [1 ]
Luo, Jingwen [1 ,2 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Peoples R China
[2] Engn Res Ctr Comp Vis & Intelligent Control Techno, Dept Educ Yunnan Prov, Kunming 650500, Peoples R China
关键词
indoor dynamic scenes; mobile robot; visual SLAM; point-line features; Manhattan worlds; RGB-D SLAM; SEGMENT DETECTOR; MOTION REMOVAL; ROBUST; ENVIRONMENTS; EFFICIENT;
D O I
10.3390/electronics13234592
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an enhanced visual simultaneous localization and mapping (vSLAM) algorithm tailored for mobile robots operating in indoor dynamic scenes. By incorporating point-line features and leveraging the Manhattan world model, the proposed PLM-SLAM framework significantly improves localization accuracy and map consistency. This algorithm optimizes the line features detected by the Line Segment Detector (LSD) through merging and pruning strategies, ensuring real-time performance. Subsequently, dynamic point-line features are rejected based on Lucas-Kanade (LK) optical flow, geometric constraints, and depth information, minimizing the impact of dynamic objects. The Manhattan world model is then utilized to reduce rotational estimation errors and optimize pose estimation. High-precision line feature matching and loop closure detection mechanisms further enhance the robustness and accuracy of the system. Experimental results demonstrate the superior performance of PLM-SLAM, particularly in high-dynamic indoor environments, outperforming existing state-of-the-art methods.
引用
收藏
页数:28
相关论文
共 55 条
[1]  
[艾青林 Ai Qinglin], 2021, [机器人, Robot], V43, P167
[2]   DDL-SLAM: A Robust RGB-D SLAM in Dynamic Environments Combined With Deep Learning [J].
Ai, Yongbao ;
Rui, Ting ;
Lu, Ming ;
Fu, Lei ;
Liu, Shuai ;
Wang, Song .
IEEE ACCESS, 2020, 8 :162335-162342
[3]   EDLines: A real-time line segment detector with a false detection control [J].
Akinlar, Cuneyt ;
Topal, Cihan .
PATTERN RECOGNITION LETTERS, 2011, 32 (13) :1633-1642
[4]   Localization and tracking of stationary users for augmented reality [J].
Baker, Lewis ;
Ventura, Jonathan ;
Langlotz, Tobias ;
Gul, Shazia ;
Mills, Steven ;
Zollmann, Stefanie .
VISUAL COMPUTER, 2024, 40 (01) :227-244
[5]   Improving monocular visual SLAM in dynamic environments: an optical-flow-based approach [J].
Cheng, Jiyu ;
Sun, Yuxiang ;
Meng, Max Q-H .
ADVANCED ROBOTICS, 2019, 33 (12) :576-589
[6]   MSC-VO: Exploiting Manhattan and Structural Constraints for Visual Odometry [J].
Company-Corcoles, Joan P. ;
Garcia-Fidalgo, Emilio ;
Ortiz, Alberto .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :2803-2810
[7]   SDF-SLAM: Semantic Depth Filter SLAM for Dynamic Environments [J].
Cui, Linyan ;
Ma, Chaowei .
IEEE ACCESS, 2020, 8 :95301-95311
[8]   DAN-YOLO: A Lightweight and Accurate Object Detector Using Dilated Aggregation Network for Autonomous Driving [J].
Cui, Shuwan ;
Liu, Feiyang ;
Wang, Zhifu ;
Zhou, Xuan ;
Yang, Bo ;
Li, Hao ;
Yang, Junhao .
ELECTRONICS, 2024, 13 (17)
[9]  
Dai L, 2024, NAT MED, V30, P584, DOI [10.1038/s41591-023-02702-z, 10.1080/14786419.2024.2394834]
[10]   A deep learning system for detecting diabetic retinopathy across the disease spectrum [J].
Dai, Ling ;
Wu, Liang ;
Li, Huating ;
Cai, Chun ;
Wu, Qiang ;
Kong, Hongyu ;
Liu, Ruhan ;
Wang, Xiangning ;
Hou, Xuhong ;
Liu, Yuexing ;
Long, Xiaoxue ;
Wen, Yang ;
Lu, Lina ;
Shen, Yaxin ;
Chen, Yan ;
Shen, Dinggang ;
Yang, Xiaokang ;
Zou, Haidong ;
Sheng, Bin ;
Jia, Weiping .
NATURE COMMUNICATIONS, 2021, 12 (01)