AN AUTOMATED PIPELINE FOR TUMOUR-INFILTRATING LYMPHOCYTE SCORING IN BREAST CANCER

被引:2
作者
Shephard, Adam J. [1 ]
Jahanifar, Mostafa [1 ]
Wang, Ruoyu [1 ]
Dawood, Muhammad [1 ]
Graham, Simon [1 ]
Sidlauskas, Kastytis [2 ]
Khurram, Syed Ali [3 ]
Rajpoot, Nasir M. [1 ]
Raza, Shan E. Ahmed [1 ]
机构
[1] Univ Warwick, Dept Comp Sci, Tissue Image Analyt Ctr, Coventry, England
[2] Queen Mary Univ London, Barts Canc Inst, London, England
[3] Univ Sheffield, Sch Clin Dent, Sheffield, England
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
关键词
Breast Cancer; Computational Pathology; TILs Detection; TILs Score; Histopathology;
D O I
10.1109/ISBI56570.2024.10635302
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tumour-infiltrating lymphocytes (TILs) are considered as a valuable prognostic markers in both triple-negative and human epidermal growth factor receptor 2 (HER2) positive breast cancer. In this study, we introduce an innovative deep learning pipeline based on the Efficient-UNet architecture to predict the TILs score for breast cancer whole-slide images (WSIs). We first segment tumour and stromal regions in order to compute a tumour bulk mask. We then detect TILs within the tumour-associated stroma, generating a TILs score by closely mirroring the pathologist's workflow. Our method exhibits state-of-the-art performance in segmenting tumour/stroma areas and TILs detection, as demonstrated by internal cross-validation on the TiGER Challenge training dataset (195 WSIs) and evaluation on the final leaderboards (38 WSIs). Additionally, our TILs score proves competitive in predicting survival outcomes within the same challenge (707 WSIs), underscoring the clinical relevance and potential of our automated pipeline as a breast cancer prognostic tool.
引用
收藏
页数:5
相关论文
共 20 条
[1]  
Amgad M., 2021, arXiv
[2]   Structured crowdsourcing enables convolutional segmentation of histology images [J].
Amgad, Mohamed ;
Elfandy, Habiba ;
Hussein, Hagar ;
Atteya, Lamees A. ;
Elsebaie, Mai A. T. ;
Elnasr, Lamia S. Abo ;
Sakr, Rokia A. ;
Salem, Hazem S. E. ;
Ismail, Ahmed F. ;
Saad, Anas M. ;
Ahmed, Joumana ;
Elsebaie, Maha A. T. ;
Rahman, Mustafijur ;
Ruhban, Inas A. ;
Elgazar, Nada M. ;
Alagha, Yahya ;
Osman, Mohamed H. ;
Alhusseiny, Ahmed M. ;
Khalaf, Mariam M. ;
Younes, Abo-Alela F. ;
Abdulkarim, Ali ;
Younes, Duaa M. ;
Gadallah, Ahmed M. ;
Elkashash, Ahmad M. ;
Fala, Salma Y. ;
Zaki, Basma M. ;
Beezley, Jonathan ;
Chittajallu, Deepak R. ;
Manthey, David ;
Gutman, David A. ;
Cooper, Lee A. D. .
BIOINFORMATICS, 2019, 35 (18) :3461-3467
[3]  
[Anonymous], 2022, EUR C COMP VIS, DOI DOI 10.1109/SPIES55999.2022.10082285
[4]   Mitosis domain generalization in histopathology images - The MIDOG [J].
Aubreville, Marc ;
Stathonikos, Nikolas ;
Bertram, Christof A. ;
Klopfleisch, Robert ;
ter Hoeve, Natalie ;
Ciompi, Francesco ;
Wilm, Frauke ;
Marzahl, Christian ;
Donovan, Taryn A. ;
Maier, Andreas ;
Breen, Jack ;
Ravikumar, Nishant ;
Chung, Youjin ;
Park, Jinah ;
Nateghi, Ramin ;
Pourakpour, Fattaneh ;
Fick, Rutger H. J. ;
Ben Hadj, Saima ;
Jahanifar, Mostafa ;
Shephard, Adam ;
Dexl, Jakob ;
Wittenberg, Thomas ;
Kondo, Satoshi ;
Lafarge, Maxime W. ;
Koelzer, Viktor H. ;
Liang, Jingtang ;
Wang, Yubo ;
Long, Xi ;
Liu, Jingxin ;
Razavi, Salar ;
Khademi, April ;
Yang, Sen ;
Wang, Xiyue ;
Erber, Ramona ;
Klang, Andrea ;
Lipnik, Karoline ;
Bolfa, Pompei ;
Dark, Michael J. ;
Wasinger, Gabriel ;
Veta, Mitko ;
Breininger, Katharina .
MEDICAL IMAGE ANALYSIS, 2023, 84
[5]  
Cancer Research UK, 2022, Breast cancer statistics
[6]  
Chen J., 2021, Cells
[7]   Socially Trusted Collaborative Edge Computing in Ultra Dense Networks [J].
Chen, Lixing ;
Xu, Jie .
SEC 2017: 2017 THE SECOND ACM/IEEE SYMPOSIUM ON EDGE COMPUTING (SEC'17), 2017,
[8]   ALBRT: Cellular Composition Prediction in Routine Histology Images [J].
Dawood, Muhammad ;
Branson, Kim ;
Rajpoot, Nasir M. ;
Minhas, Fayyaz Ul Amir Afsar .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :664-673
[9]   Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy [J].
Denkert, Carsten ;
von Minckwitz, Gunter ;
Darb-Esfahani, Silvia ;
Lederer, Bianca ;
Heppner, Barbara I. ;
Weber, Karsten E. ;
Budczies, Jan ;
Huober, Jens ;
Klauschen, Frederick ;
Furlanetto, Jenny ;
Schmitt, Wolfgang D. ;
Blohmer, Jens-Uwe ;
Karn, Thomas ;
Pfitzner, Berit M. ;
Kuemmel, Sherko ;
Engels, Knut ;
Schneeweiss, Andreas ;
Hartmann, Arndt ;
Noske, Aurelia ;
Fasching, Peter A. ;
Jackisch, Christian ;
van Mackelenbergh, Marion ;
Sinn, Peter ;
Schem, Christian ;
Hanusch, Claus ;
Untch, Michael ;
Loibl, Sibylle .
LANCET ONCOLOGY, 2018, 19 (01) :40-50
[10]  
Graham Simon, 2023, ARXIV