Machine-learning-derived thermal conductivity of two-dimensional TiS2/MoS2 van der Waals heterostructures

被引:0
作者
Nair, A. K. [1 ]
Da Silva, C. M. [1 ]
Amon, C. H. [1 ,2 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[2] Univ Toronto, Dept Chem Engn & Appl Chem, 200 Coll St, Toronto, ON M5S 3E5, Canada
来源
APL MACHINE LEARNING | 2024年 / 2卷 / 03期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
TRANSPORT; MANAGEMENT; ADSORPTION; GRAPHENE; STRAIN;
D O I
10.1063/5.0205702
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting the thermal conductivity of two-dimensional (2D) heterostructures is challenging and cannot be adequately resolved using conventional computational approaches. To address this challenge, we propose a new and efficient approach that combines first-principles density functional theory (DFT) calculations with a machine-learning interatomic potential (MLIP) methodology to determine the thermal conductivity of a novel 2D van der Waals TiS2/MoS2 heterostructure. We leverage the proposed approach to estimate the thermal conductivities of TiS2/MoS2 heterostructures as well as bilayer-TiS2 and bilayer-MoS2. A unique aspect of this approach is the combined implementation of the moment tensor potential for short-range (intralayer) interactions and the D3-dispersion correction scheme for long-range (interlayer) van der Waals interactions. This approach employs relatively inexpensive computational DFT-based datasets generated from ab initio molecular dynamics simulations to accurately describe the interatomic interactions in the bilayers. The thermal conductivities of the bilayers exhibit the following trend: bilayer-TiS2 > bilayer-MoS2 > the TiS2/MoS2 heterostructure. In addition, this work makes the case that the 2D bilayers exhibit considerably higher thermal conductivities than bulk graphite, a common battery anode material, indicating the potential to utilize 2D heterostructures in thermal management applications and energy storage devices. Furthermore, the MLIP-based methodology provides a reliable approach for estimating the thermal conductivity of bilayers and heterostructures. (c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:8
相关论文
共 46 条
[1]   Recent advances in lattice thermal conductivity calculation using machine-learning interatomic potentials [J].
Arabha, Saeed ;
Aghbolagh, Zahra Shokri ;
Ghorbani, Khashayar ;
Hatam-Lee, S. Milad ;
Rajabpour, Ali .
JOURNAL OF APPLIED PHYSICS, 2021, 130 (21)
[2]   Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 [J].
Cai, Yongqing ;
Lan, Jinghua ;
Zhang, Gang ;
Zhang, Yong-Wei .
PHYSICAL REVIEW B, 2014, 89 (03)
[3]   1ST-PRINCIPLES LINEAR COMBINATION OF ATOMIC ORBITALS METHOD FOR THE COHESIVE AND STRUCTURAL-PROPERTIES OF SOLIDS - APPLICATION TO DIAMOND [J].
CHELIKOWSKY, JR ;
LOUIE, SG .
PHYSICAL REVIEW B, 1984, 29 (06) :3470-3481
[4]   Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride [J].
da Silva, Carlos ;
Saiz, Fernan ;
Romero, David A. ;
Amon, Cristina H. .
PHYSICAL REVIEW B, 2016, 93 (12)
[5]   Machine learned interatomic potentials using random features [J].
Dhaliwal, Gurjot ;
Nair, Prasanth B. ;
Singh, Chandra Veer .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[6]   In-plane and cross-plane thermal conductivities of molybdenum disulfide [J].
Ding, Zhiwei ;
Jiang, Jin-Wu ;
Pei, Qing-Xiang ;
Zhang, Yong-Wei .
NANOTECHNOLOGY, 2015, 26 (06)
[7]   Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations [J].
Fan, Zheyong ;
Pereira, Luiz Felipe C. ;
Wang, Hui-Qiong ;
Zheng, Jin-Cheng ;
Donadio, Davide ;
Harju, Ari .
PHYSICAL REVIEW B, 2015, 92 (09)
[8]   Graphene related materials for thermal management [J].
Fu, Yifeng ;
Hansson, Josef ;
Liu, Ya ;
Chen, Shujing ;
Zehri, Abdelhafid ;
Samani, Majid Kabiri ;
Wang, Nan ;
Ni, Yuxiang ;
Zhang, Yan ;
Zhang, Zhi-Bin ;
Wang, Qianlong ;
Li, Mengxiong ;
Lu, Hongbin ;
Sledzinska, Marianna ;
Sotomayor Torres, Clivia M. ;
Volz, Sebastian ;
Balandin, Alexander A. ;
Xu, Xiangfan ;
Liu, Johan .
2D MATERIALS, 2020, 7 (01)
[9]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[10]  
Goerigk L., 2017, Non-Covalent Interactions in Quantum Chemistry and Physics, V195