scDMSC: Deep Multi-View Subspace Clustering for Single-Cell Multi-Omics Data

被引:0
作者
Wang, Zile [1 ,2 ]
Lei, Fengyu [1 ]
Shi, Xiaoping [1 ]
Zhao, Jianping [1 ]
Xia, Junfeng [1 ,3 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116000, Peoples R China
[3] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Sequential analysis; Data models; Bioinformatics; Adaptation models; Robustness; Clustering algorithms; Autoencoders; Transcriptomics; Proteins; Decoding; Subspace clustering; multi-view cluster- ing; multi-omics integration; single-cell multi-omics sequencing; CD14;
D O I
10.1109/JBHI.2025.3532784
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single-cell multi-omics sequencing technology comprehensively considers various molecular features to reveal the complexity of cells information. The clustering analysis of multi-omics data provides new insight into cellular heterogeneity. However, multi-omics data are characterized by high dimensionality, sparsity, and heterogeneity. Here, we propose an unsupervised clustering algorithm based on deep multi-view subspace learning, called scDMSC. This approach coordinates the heterogeneity of omics data through weighted reconstruction and employs deep subspace learning to identify shared latent features, elucidating the correlations among the omics. Our algorithm was rigorously tested across multiple real and simulated datasets, outperforming existing single-cell multi-omics integration methods and standard single-cell transcriptomics clustering tools in terms of both precision and scalability. Furthermore, differential expression and modality interpretability analyses in downstream applications highlight the model's capacity in uncovering biological mechanisms.
引用
收藏
页码:4534 / 4545
页数:12
相关论文
共 53 条
[1]   Correction for Closeness: Adjusting Normalized Mutual Information Measure for Clustering Comparison [J].
Amelio, Alessia ;
Pizzuti, Clara .
COMPUTATIONAL INTELLIGENCE, 2017, 33 (03) :579-601
[2]   Ablation experiments on polyimide with femtosecond laser pulses [J].
Baudach, S ;
Bonse, J ;
Krautek, W .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (Suppl 1) :S395-S398
[3]   The Frobenius norm and the commutator [J].
Boettcher, Albrecht ;
Wenzel, David .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) :1864-1885
[4]   Multi-omics data integration reveals correlated regulatory features of triple negative breast cancer [J].
Chappell, Kevin ;
Manna, Kanishka ;
Washam, Charity L. ;
Graw, Stefan ;
Alkam, Duah ;
Thompson, Matthew D. ;
Zafar, Maroof Khan ;
Hazeslip, Lindsey ;
Randolph, Christopher ;
Gies, Allen ;
Bird, Jordan T. ;
Byrd, Alicia K. ;
Miah, Sayem ;
Byrum, Stephanie D. .
MOLECULAR OMICS, 2021, 17 (05) :677-691
[5]   THE T-CELL RECEPTOR/CD3 COMPLEX - A DYNAMIC PROTEIN ENSEMBLE [J].
CLEVERS, H ;
ALARCON, B ;
WILEMAN, T ;
TERHORST, C .
ANNUAL REVIEW OF IMMUNOLOGY, 1988, 6 :629-662
[6]  
Zeiler MD, 2012, Arxiv, DOI arXiv:1212.5701
[7]   Sparse Subspace Clustering: Algorithm, Theory, and Applications [J].
Elhamifar, Ehsan ;
Vidal, Rene .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2765-2781
[8]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Multi-View Clustering for Integration of Gene Expression and Methylation Data With Tensor Decomposition and Self-Representation Learning [J].
Gao, Xiaowei ;
Wang, Yan ;
Hou, Weimin ;
Liu, Zaiyi ;
Ma, Xiaoke .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) :2050-2063
[10]   Joint probabilistic modeling of single-cell multi-omic data with totalVI [J].
Gayoso, Adam ;
Steier, Zoe ;
Lopez, Romain ;
Regier, Jeffrey ;
Nazor, Kristopher L. ;
Streets, Aaron ;
Yosef, Nir .
NATURE METHODS, 2021, 18 (03) :272-+