Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies

被引:78
作者
Zhang, Dongmei [1 ]
Meng, Xianglong [1 ]
Hou, Wenyan [1 ]
Hu, Weihao [1 ]
Mo, Jinshan [1 ]
Yang, Tianrong [1 ]
Zhang, Wendi [1 ]
Fan, Qianxiao [1 ]
Liu, Lehao [1 ]
Jiang, Bing [1 ]
Chu, Lihua [1 ]
Li, Meicheng [1 ]
机构
[1] North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
来源
NANO RESEARCH ENERGY | 2023年 / 2卷 / 02期
基金
中国国家自然科学基金; 中国博士后科学基金; 北京市自然科学基金;
关键词
solid polymer electrolytes; ionic conductivity; solid-state lithium-ion batteries; electrolyte microstructure; modification; strategies; STATE LITHIUM-ION; BLOCK-COPOLYMER ELECTROLYTES; POLY(ETHYLENE OXIDE); COMPOSITE ELECTROLYTE; ROOM-TEMPERATURE; ELECTROCHEMICAL PERFORMANCE; ELECTRICAL-PROPERTIES; MOLECULAR-DYNAMICS; SALT CONCENTRATION; RATIONAL DESIGN;
D O I
10.26599/NRE.2023.9120050
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solid polymer electrolytes (SPEs) possess comprehensive advantages such as high flexibility, low interfacial resistance with the electrodes, excellent film-forming ability, and low price, however, their applications in solid-state batteries are mainly hindered by the insufficient ionic conductivity especially below the melting temperatures, etc. To improve the ion conduction capability and other properties, a variety of modification strategies have been exploited. In this review article, we scrutinize the structure characteristics and the ion transfer behaviors of the SPEs (and their composites) and then disclose the ion conduction mechanisms. The ion transport involves the ion hopping and the polymer segmental motion, and the improvement in the ionic conductivity is mainly attributed to the increase of the concentration and mobility of the charge carriers and the construction of fast-ion pathways. Furthermore, the recent advances on the modification strategies of the SPEs to enhance the ion conduction from copolymer structure design to lithium salt exploitation, additive engineering, and electrolyte micromorphology adjustion are summarized. This article intends to give a comprehensive, systemic, and profound understanding of the ion conduction and enhancement mechanisms of the SPEs for their viable applications in solid-state batteries with high safety and energy density.
引用
收藏
页数:44
相关论文
共 152 条
[51]  
Li Y. H., Zhang L. B., Sun Z. J., Gao G. X., Lu S. Y., Zhu M., Zhang Y. F., Jia Z. Y., Xiao C. H., Bu H. T., Et al., Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition, J. Mater. Chem. A, 8, pp. 9579-9589, (2020)
[52]  
Mindemark J., Sun B., Torma E., Brandell D., High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature, J. Power Sources, 298, pp. 166-170, (2015)
[53]  
Tang W. J., Tang S., Zhang C. J., Ma Q. T., Xiang Q., Yang Y. W., Luo J. Y., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets, Adv. Energy Mater, 8, (2018)
[54]  
Utpalla P., Sharma S. K., Sudarshan K., Deshpande S. K., Sahu M., Pujari P. K., Investigating the correlation of segmental dynamics, free volume characteristics, and ionic conductivity in poly(ethylene oxide)-based electrolyte: A broadband dielectric and positron annihilation spectroscopy study, J. Phys. Chem. C, 124, pp. 4489-4501, (2020)
[55]  
Devaux D., Bouchet R., Gle D., Denoyel R., Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight, and end groups, Solid State Ionics, 227, pp. 119-127, (2012)
[56]  
Yahsi U., Deligoz H., Tav C., Ulutas K., Deger D., Yilmazturk S., Erdemci G., Coskun B., Yilmazoglu M., Yakut S., Ionic conductivity of PVDF-co-HFP/LiClO<sub>4</sub> in terms of free volume defects probed by positron annihilation lifetime spectroscopy, Radiat. Eff. Defect Solids, 174, pp. 214-228, (2019)
[57]  
Williams M. L., Landel R. F., Ferry J. D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc, 77, pp. 3701-3707, (2002)
[58]  
Arya A., Sharma A. L., Polymer electrolytes for lithium ion batteries: A critical study, Ionics, 23, pp. 497-540, (2017)
[59]  
Carvalho L. M., Guegan P., Cheradame H., Gomes A. S., Variation of the mesh size of PEO-based networks filled with TFSILi: From an Arrhenius to WLF type conductivity behavior, Eur. Polym. J, 36, pp. 401-409, (2000)
[60]  
Carvalho L. M., Guegan P., Cheradame H., Gomes A. S., Synthesis and electrochemical characterization of crosslinked poly(ethylene oxide) containing LiN(CF<sub>3</sub>SO<sub>2</sub>)<sub>2</sub>, Eur. Polym. J, 33, pp. 1741-1745, (1997)