Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies

被引:78
作者
Zhang, Dongmei [1 ]
Meng, Xianglong [1 ]
Hou, Wenyan [1 ]
Hu, Weihao [1 ]
Mo, Jinshan [1 ]
Yang, Tianrong [1 ]
Zhang, Wendi [1 ]
Fan, Qianxiao [1 ]
Liu, Lehao [1 ]
Jiang, Bing [1 ]
Chu, Lihua [1 ]
Li, Meicheng [1 ]
机构
[1] North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
来源
NANO RESEARCH ENERGY | 2023年 / 2卷 / 02期
基金
中国国家自然科学基金; 中国博士后科学基金; 北京市自然科学基金;
关键词
solid polymer electrolytes; ionic conductivity; solid-state lithium-ion batteries; electrolyte microstructure; modification; strategies; STATE LITHIUM-ION; BLOCK-COPOLYMER ELECTROLYTES; POLY(ETHYLENE OXIDE); COMPOSITE ELECTROLYTE; ROOM-TEMPERATURE; ELECTROCHEMICAL PERFORMANCE; ELECTRICAL-PROPERTIES; MOLECULAR-DYNAMICS; SALT CONCENTRATION; RATIONAL DESIGN;
D O I
10.26599/NRE.2023.9120050
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solid polymer electrolytes (SPEs) possess comprehensive advantages such as high flexibility, low interfacial resistance with the electrodes, excellent film-forming ability, and low price, however, their applications in solid-state batteries are mainly hindered by the insufficient ionic conductivity especially below the melting temperatures, etc. To improve the ion conduction capability and other properties, a variety of modification strategies have been exploited. In this review article, we scrutinize the structure characteristics and the ion transfer behaviors of the SPEs (and their composites) and then disclose the ion conduction mechanisms. The ion transport involves the ion hopping and the polymer segmental motion, and the improvement in the ionic conductivity is mainly attributed to the increase of the concentration and mobility of the charge carriers and the construction of fast-ion pathways. Furthermore, the recent advances on the modification strategies of the SPEs to enhance the ion conduction from copolymer structure design to lithium salt exploitation, additive engineering, and electrolyte micromorphology adjustion are summarized. This article intends to give a comprehensive, systemic, and profound understanding of the ion conduction and enhancement mechanisms of the SPEs for their viable applications in solid-state batteries with high safety and energy density.
引用
收藏
页数:44
相关论文
共 152 条
[1]  
Yue J. P., Yan M., Yin Y. X., Guo Y. G., Progress of the interface design in all-solid-state Li-S batteries, Adv. Funct. Mater, 28, (2018)
[2]  
Schnell J., Gunther T., Knoche T., Vieider C., Kohler L., Just A., Keller M., Passerini S., Reinhart G., All-solid-state lithium-ion and lithium metal batteries-paving the way to large-scale production, J. Power Sources, 382, pp. 160-175, (2018)
[3]  
Nitta N., Wu F. X., Lee J. T., Yushin G., Li-ion battery materials: Present and future, Mater. Today, 18, pp. 252-264, (2015)
[4]  
Lv F., Wang Z. Y., Shi L. Y., Zhu J. F., Edstrom K., Mindemark J., Yuan S., Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries, J. Power Sources, 441, (2019)
[5]  
Liu Y., Xu B. Q., Zhang W. Y., Li L. L., Lin Y. H., Nan C. W., Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries, Small, 16, (2020)
[6]  
Sastre J., Futscher M. H., Pompizi L., Aribia A., Priebe A., Overbeck J., Stiefel M., Tiwari A. N., Romanyuk Y. E., Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte, Commun. Mater, 2, (2021)
[7]  
Wang Y., Zanelotti C. J., Wang X. E., Kerr R., Jin L. Y., Kan W. H., Dingemans T. J., Forsyth M., Madsen L. A., Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways, Nat. Mater, 20, pp. 1255-1263, (2021)
[8]  
Raj V., Venturi V., Kankanallu V. R., Kuiri B., Viswanathan V., Aetukuri N. P. B., Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers, Nat. Mater, 21, pp. 1050-1056, (2022)
[9]  
Janek J., Zeier W. G., A solid future for battery development, Nat. Energy, 1, (2016)
[10]  
Ko J., Yoon Y. S., Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?, Ceram. Int, 45, pp. 30-49, (2019)