A SPECTRAL ANALYSIS OF GRAPH NEURAL NETWORKS ON DENSE AND SPARSE GRAPHS

被引:0
作者
Ruiz, Luana [1 ,2 ]
Ningyuan Huang [1 ,2 ]
Villar, Soledad [1 ,2 ]
机构
[1] Johns Hopkins Univ, AMS Dept, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, MINDS, Baltimore, MD 21218 USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024) | 2024年
关键词
Graph neural networks; graph signal processing; sparse graphs; community detection; spectral embedding; STABILITY;
D O I
10.1109/ICASSP48485.2024.10448216
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this work we propose a random graph model that can produce graphs at different levels of sparsity. We analyze how sparsity affects the graph spectra, and thus the performance of graph neural networks (GNNs) in node classification on dense and sparse graphs. We compare GNNs with spectral methods known to provide consistent estimators for community detection on dense graphs, a closely related task. We show that GNNs can outperform spectral methods on sparse graphs, and illustrate these results with numerical examples on both synthetic and real graphs.
引用
收藏
页码:9936 / 9940
页数:5
相关论文
共 34 条
[1]  
Abbe E, 2018, J MACH LEARN RES, V18
[2]  
Arroyo J, 2021, J MACH LEARN RES, V22
[3]  
Athreya A., 2017, Journal of Machine Learning Research: JMLR, V18, P8393, DOI [10.48550/arXiv.1709.05454, DOI 10.48550/ARXIV.1709.05454]
[4]  
Baranwal A, 2022, Arxiv, DOI arXiv:2102.06966
[5]  
Baranwal A, 2022, Arxiv, DOI arXiv:2204.09297
[6]   Covariate-assisted spectral clustering [J].
Binkiewicz, N. ;
Vogelstein, J. T. ;
Rohe, K. .
BIOMETRIKA, 2017, 104 (02) :361-377
[7]  
Boeker J, 2023, Arxiv, DOI arXiv:2306.03698
[8]  
Cai TT, 2020, J MACH LEARN RES, V21
[9]   On spectral embedding performance and elucidating network structure in stochastic blockmodel graphs [J].
Cape, Joshua ;
Minh Tang ;
Priebe, Carey E. .
NETWORK SCIENCE, 2019, 7 (03) :269-291
[10]  
Chen Z., 2022, arXiv