Applying machine learning techniques to predict the risk of distant metastasis from gastric cancer: a real world retrospective study

被引:0
作者
Qin, Xinxin [1 ]
Qiu, Binxu [1 ]
Ge, Litao [1 ]
Wu, Song [2 ]
Ma, Yuye [1 ]
Li, Wei [1 ]
机构
[1] First Hosp Jilin Univ, Gen Surg Ctr, Dept Gastr & Colorectal Surg, Changchun, Peoples R China
[2] Nanjing Luhe Peoples Hostipal, Gen Surg, Nanjing, Peoples R China
关键词
gastric cancer; distant metastasis; machine learning; web calculator; external validation; SURVIVAL; EPIDEMIOLOGY; VALIDATION; SURGERY; DISEASE;
D O I
10.3389/fonc.2024.1455914
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Distant metastasis of gastric cancer can seriously affect the treatment strategy of gastric cancer patients, so it is essential to identify patients at high risk of distant metastasis of gastric cancer earlier.Method In this study, we retrospectively collected research data from 18,472 gastric cancer patients from the SEER database. We applied six machine learning algorithms to construct a model that can predict distant metastasis of gastric cancer. We constructed the machine learning model using 10-fold cross-validation. We evaluated the model using the area under the receiver operating characteristic curves (AUC), the area under the precision-recall curve (AUPRC), decision curve analysis, and calibration curves. In addition, we used Shapley's addition interpretation (SHAP) to interpret the machine learning model. We used data from 1595 gastric cancer patients in the First Hospital of Jilin University for external validation. We plotted the correlation heat maps of the predictor variables. We selected an optimal model and constructed a web-based online calculator for predicting the risk of distant metastasis of gastric cancer.Result The study included 18,472 patients with gastric cancer from the SEER database, including 4,202 (22.75%) patients with distant metastases. The results of multivariate logistic regression analysis showed that age, race, grade of differentiation, tumor size, T stage, radiotherapy, and chemotherapy were independent risk factors for distant metastasis of gastric cancer. In the ten-fold cross-validation of the training set, the average AUC value of the random forest (RF) model was 0.80. The RF model performed best in the internal test set and external validation set. The RF model had an AUC of 0.80, an AUPRC of 0.555, an accuracy of 0.81, and a precision of 0.78 in the internal test set. The RF model had a metric AUC of 0.76 in the external validation set, an AUPRC of 0.496, an accuracy of 0.82, and a precision of 0.81. Finally, we constructed a network calculator for distant metastasis of gastric cancer using the RF model.Conclusion With the help of pathological and clinical indicators, we constructed a well-performing RF model for predicting the risk of distant metastasis in gastric cancer patients to help clinicians make clinical decisions.
引用
收藏
页数:13
相关论文
共 42 条
[1]  
[Anonymous], 2015, SURV EP END REPROG
[2]   Rectal Cancer, Version 2.2015 Featured Updates to the NCCN Guidelines [J].
Benson, Al B., III ;
Venook, Alan P. ;
Bekaii-Saab, Tanios ;
Chan, Emily ;
Chen, Yi-Jen ;
Cooper, Harry S. ;
Engstrom, Paul F. ;
Enzinger, Peter C. ;
Fenton, Moon J. ;
Fuchs, Charles S. ;
Grem, Jean L. ;
Grothey, Axel ;
Hochster, Howard S. ;
Hunt, Steven ;
Kamel, Ahmed ;
Kirilcuk, Natalie ;
Leong, Lucille A. ;
Lin, Edward ;
Messersmith, Wells A. ;
Mulcahy, Mary F. ;
Murphy, James D. ;
Nurkin, Steven ;
Rohren, Eric ;
Ryan, David P. ;
Saltz, Leonard ;
Sharma, Sunil ;
Shibata, David ;
Skibber, John M. ;
Sofocleous, Constantinos T. ;
Stoffel, Elena M. ;
Stotsky-Himelfarb, Eden ;
Willett, Christopher G. ;
Gregory, Kristina M. ;
Freedman-Cass, Deborah .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2015, 13 (06) :719-728
[3]   Practical Guide to Surgical Data Sets: Surveillance, Epidemiology, and End Results (SEER) Database [J].
Doll, Kern' M. ;
Rademaker, Alfred ;
Sosa, Julie A. .
JAMA SURGERY, 2018, 153 (06) :588-589
[4]   Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J].
Dong, D. ;
Tang, L. ;
Li, Z. -Y ;
Fang, M-J ;
Gao, J-B ;
Shan, X-H ;
Ying, X-J ;
Sun, Y-S ;
Fu, J. ;
Wang, X-X ;
Li, L-M ;
Li, Z-H ;
Zhang, D-F ;
Zhang, Y. ;
Li, Z-M ;
Shan, F. ;
Bu, Z-D ;
Tian, J. ;
Ji, J-F .
ANNALS OF ONCOLOGY, 2019, 30 (03) :431-438
[5]   Survival Nomogram for Curatively Resected Korean Gastric Cancer Patients: Multicenter Retrospective Analysis with External Validation [J].
Eom, Bang Wool ;
Ryu, Keun Won ;
Nam, Byung-Ho ;
Park, Yunjin ;
Lee, Hyuk-Joon ;
Kim, Min Chan ;
Cho, Gyu Seok ;
Kim, Chan Young ;
Ryu, Seung Wan ;
Shin, Dong Woo ;
Hyung, Woo Jin ;
Lee, Jun Ho .
PLOS ONE, 2015, 10 (02)
[6]   Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Glynne-Jones, R. ;
Wyrwicz, L. ;
Tiret, E. ;
Brown, G. ;
Rodel, C. ;
Cervantes, A. ;
Arnold, D. .
ANNALS OF ONCOLOGY, 2017, 28 :22-40
[7]   Endoscopy for upper GI cancer screening in the general population: a cost-utility analysis [J].
Gupta, Neil ;
Bansal, Ajay ;
Wani, Sachin B. ;
Gaddam, Srinivas ;
Rastogi, Amit ;
Sharma, Prateek .
GASTROINTESTINAL ENDOSCOPY, 2011, 74 (03) :610-624
[8]   Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer [J].
Ham, In-Hye ;
Oh, Hye Jeong ;
Jin, Hyejin ;
Bae, Cheong A. ;
Jeon, Sang-Min ;
Choi, Kyeong Sook ;
Son, Sang-Yong ;
Han, Sang-Uk ;
Brekken, Rolf A. ;
Lee, Dakeun ;
Hur, Hoon .
MOLECULAR CANCER, 2019, 18 (1)
[9]   Clinicopathological features and prognostic factors of gastric cancer patients aged 40 years or younger [J].
Hsieh, Feng-Jen ;
Wang, Yu-Chao ;
Hsu, Jun-Te ;
Liu, Keng-Hao ;
Yeh, Chun-Nan ;
Yeh, Ta-Sen ;
Hwang, Tsann-Long ;
Jan, Yi-Yin .
JOURNAL OF SURGICAL ONCOLOGY, 2012, 105 (03) :304-309
[10]   Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism [J].
Karagiannis, George S. ;
Pastoriza, Jessica M. ;
Wang, Yarong ;
Harney, Allison S. ;
Entenberg, David ;
Pignatelli, Jeanine ;
Sharma, Ved P. ;
Xue, Emily A. ;
Cheng, Esther ;
D'Alfonso, Timothy M. ;
Jones, Joan G. ;
Anampa, Jesus ;
Rohan, Thomas E. ;
Sparano, Joseph A. ;
Condeelis, John S. ;
Oktay, Maja H. .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (397)