GROUND STATE SOLUTIONS FOR A CRITICAL FRACTIONAL LAPLACIAN EQUATION IN UNBOUNDED DOMAINS: EXISTENCE AND REGULARITY

被引:0
作者
Shen, Yansheng [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Fractional Laplacian; ground state solutions; critical exponents; variational techniques; unbounded strip-like domains; BREZIS-NIRENBERG RESULT; POSITIVE SOLUTIONS; P-LAPLACIAN; ELLIPTIC-EQUATIONS; NONLOCAL PROBLEMS; RADIAL SOLUTIONS; MULTIPLICITY; INEQUALITIES; UNIQUENESS; EXPONENT;
D O I
10.12775/TMNA.2024.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study the following fractional critical problem {(-triangle)(s)u=lambda|u|(q-2)u+|u|2(s)(& lowast;)-(2)u in ohm, u= 0 in R-N\ohm, where ohm is an open unbounded strip-like domain in R-N,N >2s with s is an element of(0,1),lambda >0,q is an element of[2,2(s)(& lowast;)-) and 2(s)(& lowast;)= 2(N)/(N-2s). By variational methods, we prove the existence of positive ground state solutions to theproblem. Further, we study the regularity of these solutions. Precisely,using a Brezis-Kato type estimate for unbounded domains, we establish the L-infinity-bound on nonnegative solutions of the equation for certain range of q. The present work extends the existence and regularity results for fractional Laplace equations to unbounded domains
引用
收藏
页码:621 / 653
页数:33
相关论文
共 43 条
[1]   Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity [J].
Alves, CO ;
Ding, YH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :508-521
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Asymptotic analysis of the Dirichlet fractional Laplacian in domains becoming unbounded [J].
Ambrosio, Vincenzo ;
Freddi, Lorenzo ;
Musina, Roberta .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
[4]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[5]  
AZORERO JPG, 1987, COMMUN PART DIFF EQ, V12, P1389
[6]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[7]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[8]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[9]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[10]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106