The utility of dynamic forest structure from GEDI lidar fusion in tropical mammal species distribution models

被引:0
作者
Burns, Patrick [1 ]
Kaszta, Zaneta [2 ]
Cushman, Samuel A. [2 ,3 ]
Brodie, Jedediah F. [4 ,5 ,6 ]
Hakkenberg, Christopher R. [1 ]
Jantz, Patrick [1 ]
Deith, Mairin [7 ]
Luskin, Matthew Scott [8 ]
Ball, James G. C. [9 ]
Mohd-Azlan, Jayasilan [6 ]
Burslem, David F. R. P. [10 ]
Cheyne, Susan M. [3 ,11 ]
Haidir, Iding [3 ,12 ]
Hearn, Andrew James [3 ]
Slade, Eleanor [13 ]
Williams, Peter J. [14 ]
Macdonald, David W. [3 ]
Goetz, Scott J. [1 ]
机构
[1] No Arizona Univ, Sch Informat Comp & Cyber Syst, Flagstaff, AZ 86011 USA
[2] No Arizona Univ, Dept Biol, Flagstaff, AZ USA
[3] Univ Oxford, Dept Biol, Wildlife Conservat Res Unit, Oxford, England
[4] Univ Montana, Div Biol Sci, Missoula, MT USA
[5] Univ Montana, Wildlife Biol Program, Missoula, MT USA
[6] Univ Malaysia Sarawak, Inst Biodivers & Environm Conservat, Kota Samarahan, Sarawak, Malaysia
[7] Univ British Columbia, Inst Oceans & Fisheries, Vancouver, BC, Canada
[8] Univ Queensland, Sch Environm, Brisbane, Qld, Australia
[9] Univ Cambridge, Conservat Res Inst, Dept Plant Sci, Cambridge, England
[10] Univ Aberdeen, Sch Biol Sci, Aberdeen, Scotland
[11] Borneo Nat Fdn Int, Penryn, Cornwall, England
[12] Kaltim Lestari Utama, Samarinda, Indonesia
[13] Nanyang Technol Univ, Asian Sch Environm, Singapore, Singapore
[14] Michigan State Univ, Coll Nat Sci, Dept Integrat Biol, E Lansing, MI USA
来源
FRONTIERS IN REMOTE SENSING | 2025年 / 6卷
基金
美国国家航空航天局;
关键词
lidar; forest structure; species distribution models; biodiversity; Landsat; HABITAT SELECTION; LAND-COVER; CONSERVATION; CONNECTIVITY; RESTORATION; LANDSCAPE; INDEXES; SCALE; AREA; MAP;
D O I
10.3389/frsen.2025.1563430
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Remote sensing is an important tool for monitoring species habitat spatially and temporally. Species distribution models (SDM) often rely on remotely-sensed geospatial datasets to predict probability of occurrence and infer habitat preferences. Lidar measurements from the Global Ecosystem Dynamics Investigation (GEDI) are shedding light on three dimensional forest structure in regions of the world where this aspect of species habitat has previously been poorly quantified. Here we combine a large camera trap dataset of mammal species in Borneo and Sumatra with a diverse set of geospatial data to predict the probability of occurrence of 47 species. Multi-temporal GEDI predictors were created through fusion with Landsat time series, extending back to the year 2001. The availability of these GEDI-based forest structure predictors and other temporally-resolved predictor variables enabled temporal matching of species occurrences and hindcast predictions of species probability of occurrence at years 2001 and 2021. Our GEDI-Landsat fusion approach worked well for forest structure metrics related to canopy height (relative height of the 95th percentile of returned energy R 2 = 0.62 and relative RMSE = 41%) but, not surprisingly, was less accurate for metrics related to interior canopy vegetation structure (e.g., plant area volume density from 0 to 5 m above the ground R 2 = 0.05 and relative RMSE = 85%). For the SDM analyses, we tested several combinations of predictor sets and found that when considering a large pool of multiscale predictors, the exact composition, and whether GEDI Fusion predictors were included, didn't have a large impact on generalized linear modeling (GLM) and Random Forest (RF) model performance. Adding GEDI Fusion predictors to a baseline set only meaningfully improved performance for some species (n = 4 for RF and n = 3 for GLM). However, when GEDI Fusion predictors were used in a smaller predictor set that is more suitable for hindcasting species probability of occurrence, more SDMs showed meaningful performance improvements relative to the baseline model (n = 9 for RF and n = 4 for GLM) and the relative importance of GEDI-based canopy structure predictors increased relative to when they were combined with the baseline predictor set. Moreover, as we examined predictor importance and partial dependence, the utility of GEDI Fusion predictors in hindcast models was evident in regards to ecological interpretability. We produced a catalog of probability of occurrence maps for all 47 mammals species at 90 m spatial resolution for years 2001 and 2021, enabling subsequent ecological interpretation and conservation analyses.
引用
收藏
页数:25
相关论文
共 130 条
[81]  
2
[82]   Comparison of three global canopy height maps and their applicability to biodiversity modeling: Accuracy issues revealed [J].
Moudry, Vitezslav ;
Gabor, Lukas ;
Marselis, Suzanne ;
Pracna, Petra ;
Bartak, Vojtech ;
Prosek, Jiri ;
Navratilova, Barbora ;
Novotny, Jan ;
Potuckova, Marketa ;
Gdulova, Katerina ;
Crespo-Peremarch, Pablo ;
Komarek, Jan ;
Malavasi, Marco ;
Rocchini, Duccio ;
Ruiz, Luis A. ;
Torralba, Jesus ;
Torresani, Michele ;
Gatti, Roberto Cazzolla ;
Wild, Jan .
ECOSPHERE, 2024, 15 (10)
[83]   Biodiversity hotspots for conservation priorities [J].
Myers, N ;
Mittermeier, RA ;
Mittermeier, CG ;
da Fonseca, GAB ;
Kent, J .
NATURE, 2000, 403 (6772) :853-858
[84]   Application of point cloud data to assess edge effects on rainforest structural characteristics in tropical Sumatra, Indonesia [J].
Nguyen, Tuan Anh ;
Ehbrecht, Martin ;
Camarretta, Nicolo .
LANDSCAPE ECOLOGY, 2023, 38 (05) :1191-1208
[85]  
Nursamsi I., 2023, Wildl. Lett, V1, P59, DOI [10.1002/wll2.12010, DOI 10.1002/WLL2.12010]
[86]   Mapping the distribution of the Sunda pangolin (Manis java']javanica) within natural forest in Sabah, Malaysian Borneo [J].
Panjang, Elisa ;
Lim, Hong Ye ;
Thomas, Robert J. ;
Goossens, Benoit ;
Hearn, Andrew J. ;
Macdonald, David W. ;
Ross, Joanna ;
Wong, Seth Timothy ;
Guharajan, Roshan ;
Mohamed, Azlan ;
Gardner, Penny C. ;
Koh, Sharon ;
Cheah, Cheryl ;
Ancrenaz, Marc ;
Lackman, Isabelle ;
Ong, Robert ;
Nilus, Reuben ;
Hastie, Alex ;
Brodie, Jedediah F. ;
Granados, Alys ;
Helmy, Olga ;
Lapis, Olivia Magritta ;
Simon, Donna ;
Davis, Glyn ;
Te Wong, Siew ;
Rampangajouw, Mark ;
Matsubayashi, Hisashi ;
Sano, Chihiro ;
Runting, Rebecca K. ;
Sipangkui, Symphorosa ;
Abram, Nicola K. .
GLOBAL ECOLOGY AND CONSERVATION, 2024, 52
[87]   Selecting predictors to maximize the transferability of species distribution models: lessons from cross-continental plant invasions [J].
Petitpierre, Blaise ;
Broennimann, Olivier ;
Kueffer, Christoph ;
Daehler, Curtis ;
Guisan, Antoine .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2017, 26 (03) :275-287
[88]   Creation of forest edges has a global impact on forest vertebrates [J].
Pfeifer, M. ;
Lefebvre, V. ;
Peres, C. A. ;
Banks-Leite, C. ;
Wearn, O. R. ;
Marsh, C. J. ;
Butchart, S. H. M. ;
Arroyo-Rodriguez, V. ;
Barlow, J. ;
Cerezo, A. ;
Cisneros, L. ;
D'Cruze, N. ;
Faria, D. ;
Hadley, A. ;
Harris, S. M. ;
Klingbeil, B. T. ;
Kormann, U. ;
Lens, L. ;
Medina-Rangel, G. F. ;
Morante-Filho, J. C. ;
Olivier, P. ;
Peters, S. L. ;
Pidgeon, A. ;
Ribeiro, D. B. ;
Scherber, C. ;
Schneider-Maunoury, L. ;
Struebig, M. ;
Urbina-Cardona, N. ;
Watling, J. I. ;
Willig, M. R. ;
Wood, E. M. ;
Ewers, R. M. .
NATURE, 2017, 551 (7679) :187-+
[89]   Global seasonal dynamics of inland open water and ice [J].
Pickens, Amy H. ;
Hansen, Matthew C. ;
Stehman, Stephen, V ;
Tyukavina, Alexandra ;
Potapov, Peter ;
Zalles, Viviana ;
Higgins, Jonathan .
REMOTE SENSING OF ENVIRONMENT, 2022, 272
[90]   Global rarity of high- integrity tropical rainforests for threatened and declining terrestrial vertebrates [J].
Pillay, Rajeev ;
Watson, James E. M. ;
Hansen, Andrew J. ;
Burns, Patrick ;
Virnig, Anne Lucy Stilger ;
Supples, Christina ;
Armenteras, Dolors ;
Gonzalez-del-Pliegoh, Pamela ;
Aragon-Osejo, Jose ;
Jantz, Patrick A. ;
Ervin, Jamison ;
Goetz, Scott J. ;
Venter, Oscar .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (51)