MuMoSNet: 3D MRI-based Brain Tumor Segmentation via Multi-modal and Multi-scale Feature Fusion

被引:1
作者
Zhu, Zhiyuan [1 ]
Ning, Zhiyuan [2 ]
Cui, Hui [3 ]
Shen, Junao [1 ]
Wang, Jiaheng [1 ]
Wang, Xinyu [1 ]
Feng, Tian [1 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Univ Sydney, Sydney, NSW, Australia
[3] La Trobe Univ, Melbourne, Vic, Australia
来源
2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Multi-modal; MRI; Transformer; Feature fusion;
D O I
10.1109/ICME57554.2024.10687443
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
MRI images contain multi-modal information, introducing complexity to brain tumor segmentation. Recent studies have incorporated the Transformer model, given its exceptional capability to model long-range dependence, into convolutional neural networks (CNNs) to address limited receptive fields. However, such a hybrid strategy often neglects the inherent multi-modal characteristics of MRI images and lacks the capacity to capture modality-specific features. In this paper, we propose a multi-modal and multi-scale feature fusion network (MuMoSNet) for brain tumor segmentation from 3D MRI images. Specifically, our MuMoSNet introduces a parallel ME-Transformer encoder alongside the CNN-based encoder in 3D U-Net to separately extract modality-specific features. Besides, we devise a multi-feature fusion (MuFF) module to learn affinity relationships between cross-modality shared features and modality-specific features, maximizing the exploration of multi-modal information. Extensive experiments on both BraTS21 and BraTS20 datasets suggest that our MuMoSNet outperforms current representative methods for brain tumor segmentation.
引用
收藏
页数:6
相关论文
共 15 条
[1]  
Bakas S., 2017, The Cancer Imaging Archive, DOI [10.7937/K9/TCIA. 2017.KLXWJJ1Q, DOI 10.7937/K9/TCIA.2017.GJQ7R0EF]
[2]  
Bakas S., 2018, Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge, DOI 10.17863/CAM.38755
[3]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[4]  
Cicek O., 2016, Medical Image Computing and Computer-Assisted Intervention, V9901, P424, DOI DOI 10.1007/978-3-319-46723-8_49
[5]  
Dosovitskiy A., 2020, arXiv, V2010, P11929, DOI [10.48550/arXiv.2010.11929Focustolearnmore, DOI 10.48550/ARXIV.2010.11929FOCUSTOLEARNMORE]
[6]   Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images [J].
Hatamizadeh, Ali ;
Nath, Vishwesh ;
Tang, Yucheng ;
Yang, Dong ;
Roth, Holger R. ;
Xu, Daguang .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 :272-284
[7]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[8]   SwinIR: Image Restoration Using Swin Transformer [J].
Liang, Jingyun ;
Cao, Jiezhang ;
Sun, Guolei ;
Zhang, Kai ;
Van Gool, Luc ;
Timofte, Radu .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :1833-1844
[9]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[10]  
Oktay O., 2018, Attention U-Net: Learning Where to Look for the Pancreas