MRI-based multimodal AI model enables prediction of recurrence risk and adjuvant therapy in breast cancer

被引:0
作者
Yu, Yunfang [1 ,2 ,3 ,4 ,5 ]
Ren, Wei [1 ]
Mao, Luhui [1 ]
Ouyang, Wenhao [1 ]
Hu, Qiugen [6 ]
Yao, Qinyue [7 ]
Tan, Yujie [1 ]
He, Zifan [1 ]
Ban, Xiaohua [8 ]
Hu, Huijun [9 ]
Lin, Ruichong [10 ]
Wang, Zehua [10 ,11 ]
Chen, Yongjian [12 ]
Wu, Zhuo [9 ]
Chen, Kai [1 ]
Ouyang, Jie [13 ]
Li, Tang [1 ]
Zhang, Zebang [1 ]
Liu, Guoying [1 ]
Chen, Xiuxing [1 ]
Li, Zhuo [1 ]
Duan, Xiaohui [9 ]
Wang, Jin [7 ]
Yao, Herui [1 ]
机构
[1] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Breast Tumor Ctr, Phase Clin Trial Ctr Sun Yat 1,Dept Med Oncol,Guan, 107 Yanjiang Xi Rd, Guangzhou 510030, Peoples R China
[2] Sun Yat Sen Univ, Mem Hosp, Shenshan Med Ctr, Guangdong Prov Key Lab Canc Pathogenesis & Precis, Shanwei, Peoples R China
[3] Macau Univ Sci & Technol, Inst AI Med, Taipa, Macao, Peoples R China
[4] Macau Univ Sci & Technol, Fac Med, Taipa, Macao, Peoples R China
[5] Jinan Univ, Affiliated Hosp 1, Dept Breast Surg, Guangzhou, Peoples R China
[6] Southern Med Univ, Shunde Hosp, Dept Radiol, Foshan, Peoples R China
[7] Cells Vis Guangzhou Med Technol Inc, 18,Dongxiao Nan Rd, Guangzhou 510220, Peoples R China
[8] Sun Yat Sen Univ, Imaging Diagnost & Intervent Ctr, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China,Canc Ctr, Guangzhou, Peoples R China
[9] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Radiol, 107 Yanjiang xi Rd, Guangzhou 510030, Peoples R China
[10] Macau Univ Sci & Technol, Fac Innovat Engn, Taipa, Macao, Peoples R China
[11] UMedEVO & UMedREVO Artificial Intelligence Technol, Guangzhou, Peoples R China
[12] Karolinska Inst, Ctr Mol Med, Dept Med Solna, Dermatol & Venereol Div, Stockholm, Sweden
[13] Tungwah Hosp, Dept Breast Surg, Dongguan, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Deep learning; Multimodal data fusion; Magnetic resonance imaging; Postoperative risk stratification; Breast cancer;
D O I
10.1016/j.phrs.2025.107765
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Timely intervention and improved prognosis for breast cancer patients rely on early metastasis risk detection and accurate treatment predictions. This study introduces an advanced multimodal MRI and AI-driven 3D deep learning model, termed the 3D-MMR-model, designed to predict recurrence risk in non-metastatic breast cancer patients. We conducted a multicenter study involving 1199 non-metastatic breast cancer patients from four institutions in China, with comprehensive MRI and clinical data retrospectively collected. Our model employed multimodal-data fusion, utilizing contrast-enhanced T1-weighted imaging (T1 + C) and T2-weighted imaging (T2WI) volumes, processed through a modified 3D-UNet for tumor segmentation and a DenseNet121-based architecture for disease-free survival (DFS) prediction. Additionally, we performed RNA-seq analysis to delve further into the relationship between concentrated hotspots within the tumor region and the tumor microenvironment. The 3D-MR-model demonstrated superior predictive performance, with time-dependent ROC analysis yielding AUC values of 0.90, 0.89, and 0.88 for 2-, 3-, and 4-year DFS predictions, respectively, in the training cohort. External validation cohorts corroborated these findings, highlighting the model's robustness across diverse clinical settings. Integration of clinicopathological features further enhanced the model's accuracy, with a multimodal approach significantly improving risk stratification and decision-making in clinical practice. Visualization techniques provided insights into the decision-making process, correlating predictions with tumor microenvironment characteristics. In summary, the 3D-MMR-model represents a significant advancement in breast cancer prognosis, combining cutting-edge AI technology with multimodal imaging to deliver precise and clinically relevant predictions of recurrence risk. This innovative approach holds promise for enhancing patient outcomes and guiding individualized treatment plans in breast cancer care.
引用
收藏
页数:10
相关论文
共 36 条
[1]   A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer [J].
Amgad, Mohamed ;
Hodge, James M. ;
Elsebaie, Maha A. T. ;
Bodelon, Clara ;
Puvanesarajah, Samantha ;
Gutman, David A. ;
Siziopikou, Kalliopi P. ;
Goldstein, Jeffery A. ;
Gaudet, Mia M. ;
Teras, Lauren R. ;
Cooper, Lee A. D. .
NATURE MEDICINE, 2024, 30 (01) :85-+
[2]   xCell: digitally portraying the tissue cellular heterogeneity landscape [J].
Aran, Dvir ;
Hu, Zicheng ;
Butte, Atul J. .
GENOME BIOLOGY, 2017, 18
[3]   Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer [J].
Boehm, Kevin M. ;
Aherne, Emily A. ;
Ellenson, Lora ;
Nikolovski, Ines ;
Alghamdi, Mohammed ;
Vazquez-Garcia, Ignacio ;
Zamarin, Dmitriy ;
Roche, Kara Long ;
Liu, Ying ;
Patel, Druv ;
Aukerman, Andrew ;
Pasha, Arfath ;
Rose, Doori ;
Selenica, Pier ;
Causa Andrieu, Pamela I. ;
Fong, Chris ;
Capanu, Marinela ;
Reis-Filho, Jorge S. ;
Vanguri, Rami ;
Veeraraghavan, Harini ;
Gangai, Natalie ;
Sosa, Ramon ;
Leung, Samantha ;
McPherson, Andrew ;
Gao, JianJiong ;
Lakhman, Yulia ;
Shah, Sohrab P. .
NATURE CANCER, 2022, 3 (06) :723-+
[4]   Enhancing the reliability and accuracy of AI-enabled diagnosis via complementarity-driven deferral to clinicians [J].
Dvijotham, Krishnamurthy ;
Winkens, Jim ;
Barsbey, Melih ;
Ghaisas, Sumedh ;
Stanforth, Robert ;
Pawlowski, Nick ;
Strachan, Patricia ;
Ahmed, Zahra ;
Azizi, Shekoofeh ;
Bachrach, Yoram ;
Culp, Laura ;
Daswani, Mayank ;
Freyberg, Jan ;
Kelly, Christopher ;
Kiraly, Atilla ;
Kohlberger, Timo ;
McKinney, Scott ;
Mustafa, Basil ;
Natarajan, Vivek ;
Geras, Krzysztof ;
Witowski, Jan ;
Qin, Zhi Zhen ;
Creswell, Jacob ;
Shetty, Shravya ;
Sieniek, Marcin ;
Spitz, Terry ;
Corrado, Greg ;
Kohli, Pushmeet ;
Cemgil, Taylan ;
Karthikesalingam, Alan .
NATURE MEDICINE, 2023, 29 (7) :1814-1820
[5]  
Fowler AM, 2022, LANCET ONCOL, V23, pE32, DOI 10.1016/S1470-2045(21)00577-5
[6]   Artificial Intelligence and Machine Learning in Clinical Medicine, 2023 [J].
Haug, Charlotte J. J. ;
Drazen, Jeffrey M. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (13) :1201-1208
[7]  
He KM, 2015, Arxiv, DOI [arXiv:1512.03385, 10.48550/arXiv.1512.03385]
[8]  
Hong Y.N., 2021, Nat. Commun., V12, P12
[9]  
Huang G, 2018, Arxiv, DOI arXiv:1608.06993
[10]  
Kerfoot E., 2019, Stat. Atlas Comput. Models Heart Atr. Segm. LV Quantif. Chall., V11395