Integrated multi-omics profiling of immune microenvironment and drug resistance signatures for precision prognosis in prostate cancer

被引:0
作者
Li, Chao
Wu, Longxiang
Zhong, Bowen
Gan, Yu [2 ]
Zhou, Lei [1 ]
Tan, Shuo [1 ]
Hou, Weibin [1 ]
Yao, Kun [1 ]
Wang, Bingzhi [1 ]
Ou, Zhenyu [2 ]
Zhang, Shengwang [1 ,3 ]
Xiong, Wei [1 ,3 ]
机构
[1] Cent South Univ, Xiangya Hosp 3, Dept Urol, 138 Tongzipo Rd, Changsha 410013, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Hosp, Dept Urol, Changsha 410008, Hunan, Peoples R China
[3] Cent South Univ, Xiangya Hosp 3, Dept Radiol, 138 Tongzipo Rd, Changsha 410013, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Tumor microenvironment; prostate cancer; drug resistance; immunotherapy; prognostic model; RISK STRATIFICATION; EXPRESSION; VALIDATION; DISCOVERY; CARCINOMA; LANDSCAPE; GENOMICS;
D O I
10.20517/cdr.2025.47
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: Prostate cancer (PCa) continues to be a significant cause of mortality among men, with treatment resistance often influenced by the complexity of the tumor microenvironment (TME). This study aims to develop an immune-centric prognostic model that correlates TME dynamics, genomic instability, and the heterogeneity of drug resistance in PCa. Methods: Multi-omics data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were integrated, encompassing transcriptomic profiles of 554 TCGA-PRAD samples and 329 external validation samples. Immune cell infiltration was assessed using CIBERSORT and ESTIMATE. Weighted gene co-expression network analysis (WGCNA) was employed to identify immune-related modules. Single-cell RNA sequencing (ScRNA-seq) of 835 PCa cells uncovered subtype-specific resistance patterns. Prognostic models were constructed using least absolute shrinkage and selection operator (LASSO) regression and subsequently validated experimentally in PCa cell lines. Results: Two immune subtypes were identified: high-risk subgroups displayed TP53 mutations, increased tumor mutation burden (TMB), and enriched energy metabolism pathways. ScRNA-seq delineated three PCa cell clusters, with high-risk subtypes being sensitive to bendamustine/dacomitinib and resistant to apalutamide/neratinib. A 10-gene prognostic model (e.g., MUC5B, TREM1) categorized patients into high/low-risk groups with distinct survival outcomes (log-rank P < 0.0001). Validation in external datasets confirmed the robust predictive accuracy (AUC: 0.854-0.889). Experimental assays verified subtype-specific drug responses and dysregulation of key model genes. Discussion: This study establishes a TME-driven prognostic framework that connects immune heterogeneity, genomic instability, and therapeutic resistance in PCa. By pinpointing metabolic dependencies and subtype-specific vulnerabilities, our findings provide actionable strategies to circumvent treatment failure, such as targeting energy metabolism or tailoring therapies based on resistance signatures.
引用
收藏
页数:26
相关论文
共 51 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[4]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[5]   Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks [J].
Blanche, Paul ;
Dartigues, Jean-Francois ;
Jacqmin-Gadda, Helene .
STATISTICS IN MEDICINE, 2013, 32 (30) :5381-5397
[6]   Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression [J].
Chen, Sujun ;
Zhu, Guanghui ;
Yang, Yue ;
Wang, Fubo ;
Xiao, Yu-Tian ;
Zhang, Na ;
Bian, Xiaojie ;
Zhu, Yasheng ;
Yu, Yongwei ;
Liu, Fei ;
Dong, Keqin ;
Mariscal, Javier ;
Liu, Yin ;
Soares, Fraser ;
Loo Yau, Helen ;
Zhang, Bo ;
Chen, Weidong ;
Wang, Chao ;
Chen, Dai ;
Guo, Qinghua ;
Yi, Zhengfang ;
Liu, Mingyao ;
Fraser, Michael ;
De Carvalho, Daniel D. ;
Boutros, Paul C. ;
Di Vizio, Dolores ;
Jiang, Zhou ;
van der Kwast, Theodorus ;
Berlin, Alejandro ;
Wu, Song ;
Wang, Jianhua ;
He, Housheng Hansen ;
Ren, Shancheng .
NATURE CELL BIOLOGY, 2021, 23 (01) :87-98
[7]  
Feng DC, 2023, AGING-US, V15, P9358, DOI 10.18632/aging.204888
[8]  
Friedman J, Lasso and elastic -net regularized generalized linear models
[9]   Integrated analysis of multimodal single-cell data [J].
Hao, Yuhan ;
Hao, Stephanie ;
Andersen-Nissen, Erica ;
Mauck, William M. I. I. I. I. I. I. ;
Zheng, Shiwei ;
Butler, Andrew ;
Lee, Maddie J. ;
Wilk, Aaron J. ;
Darby, Charlotte ;
Zager, Michael ;
Hoffman, Paul ;
Stoeckius, Marlon ;
Papalexi, Efthymia ;
Mimitou, Eleni P. ;
Jain, Jaison ;
Srivastava, Avi ;
Stuart, Tim ;
Fleming, Lamar M. ;
Yeung, Bertrand ;
Rogers, Angela J. ;
McElrath, Juliana M. ;
Blish, Catherine A. ;
Gottardo, Raphael ;
Smibert, Peter ;
Satija, Rahul .
CELL, 2021, 184 (13) :3573-+
[10]   Transcriptional mediators of treatment resistance in lethal prostate cancer [J].
He, Meng Xiao ;
Cuoco, Michael S. ;
Crowdis, Jett ;
Bosma-Moody, Alice ;
Zhang, Zhenwei ;
Bi, Kevin ;
Kanodia, Abhay ;
Su, Mei-Ju ;
Ku, Sheng-Yu ;
Garcia, Maria Mica ;
Sweet, Amalia R. ;
Rodman, Christopher ;
DelloStritto, Laura ;
Silver, Rebecca ;
Steinharter, John ;
Shah, Parin ;
Izar, Benjamin ;
Walk, Nathan C. ;
Burke, Kelly P. ;
Bakouny, Ziad ;
Tewari, Alok K. ;
Liu, David ;
Camp, Sabrina Y. ;
Vokes, Natalie I. ;
Salari, Keyan ;
Park, Jihye ;
Vigneau, Sebastien ;
Fong, Lawrence ;
Russo, Joshua W. ;
Yuan, Xin ;
Balk, Steven P. ;
Beltran, Himisha ;
Rozenblatt-Rosen, Orit ;
Regev, Aviv ;
Rotem, Asaf ;
Taplin, Mary-Ellen ;
Van Allen, Eliezer M. .
NATURE MEDICINE, 2021, 27 (03) :426-+