Low-order Linear Parameter Varying Approximations for Nonlinear Controller Design for Flows

被引:0
作者
Das, Amritam [1 ]
Heiland, Jan [2 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Control Syst Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Max Planck Inst Dynam Complex Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
来源
2024 EUROPEAN CONTROL CONFERENCE, ECC 2024 | 2024年
关键词
INFINITY CONTROL; SYSTEMS;
D O I
10.23919/ECC64448.2024.10591292
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The control of nonlinear large-scale dynamical models such as the incompressible Navier-Stokes equations is a challenging task. The computational challenges in the controller design come from both the possibly large state space and the nonlinear dynamics. A general purpose approach certainly will resort to numerical linear algebra techniques which can handle large system sizes or to model order reduction. In this work we propose a two-folded model reduction approach tailored to nonlinear controller design for incompressible Navier-Stokes equations and similar PDE models that come with quadratic nonlinearities. Firstly, we approximate the nonlinear model within in the class of LPV systems with a very low dimension in the parametrization. Secondly, we reduce the system size to a moderate number of states. This way, standard robust LPV theory for nonlinear controller design becomes feasible. We illustrate the procedure and its potentials by numerical simulations.
引用
收藏
页码:2065 / 2070
页数:6
相关论文
共 23 条
[1]   SELF-SCHEDULED H-INFINITY CONTROL OF LINEAR PARAMETER-VARYING SYSTEMS - A DESIGN EXAMPLE [J].
APKARIAN, P ;
GAHINET, P ;
BECKER, G .
AUTOMATICA, 1995, 31 (09) :1251-1261
[2]  
Banks HT, 2007, COMPUT OPTIM APPL, V37, P177, DOI [10.1007/s10589-007-9015-2, 10.1007/S10589-007-9015-2]
[3]   ROBUST PERFORMANCE OF LINEAR PARAMETRICALLY VARYING SYSTEMS USING PARAMETRICALLY-DEPENDENT LINEAR FEEDBACK [J].
BECKER, G ;
PACKARD, A .
SYSTEMS & CONTROL LETTERS, 1994, 23 (03) :205-215
[4]  
Behr M., 2017, ARXIV
[5]   Exponential stability and stabilization of extended linearizations via continuous updates of Riccati-based feedback [J].
Benner, P. ;
Heiland, J. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (04) :1218-1232
[6]   Feedback Stabilization of the Two-Dimensional Navier-Stokes Equations by Value Function Approximation [J].
Breiten, Tobias ;
Kunisch, Karl ;
Pfeiffer, Laurent .
APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03) :599-641
[7]   INFINITE-HORIZON BILINEAR OPTIMAL CONTROL PROBLEMS: SENSITIVITY ANALYSIS AND POLYNOMIAL FEEDBACK LAWS [J].
Breiten, Tobias ;
Kunisch, Karl ;
Pfeiffer, Laurent .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (05) :3184-3214
[8]  
Chiang R. Y., 2000, ROBUST CONTROL TOOLB
[9]  
Dodds SJ, 2015, ADV TXB CONTR SIG PR, P705, DOI 10.1007/978-1-4471-6675-7_10
[10]  
Hashemi SM, 2011, IEEE DECIS CONTR P, P2010, DOI 10.1109/CDC.2011.6161232