Digital design and optimization of the integrated synthesis and crystallization process using data-driven approaches

被引:0
作者
Ma, Yiming [1 ]
Li, Wei [1 ]
Liu, Jiaxu [1 ]
Shang, Gao [1 ]
Yang, Huaiyu [1 ]
Gong, Junbo [2 ]
Nagy, Zoltan K. [1 ,3 ]
Benyahia, Brahim [1 ]
机构
[1] Loughborough Univ, Dept Chem Engn, Loughborough LE11 3TU, England
[2] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin, Peoples R China
[3] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN USA
基金
英国工程与自然科学研究理事会;
关键词
continuous pharmaceutical manufacturing; data-driven; digital design; machine learning; sustainability; BATCH; PHARMACEUTICALS;
D O I
10.1002/aic.18931
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study presents a data-driven modeling and multi-objective optimization framework for an integrated section of continuous pharmaceutical manufacturing, focusing on flow synthesis and continuous crystallization. To address data scarcity and trade-offs among product quality, efficiency, and environmental impact, the framework combines generative adversarial networks (GANs), artificial neural networks (ANNs), and genetic algorithms (GAs). An integrated dual-GAN (ID-GAN) generates data under physicochemical constraints, which are merged with real data to train an ANN with 15%-20% mean absolute errors for particle size, productivity, and a sustainability throughput index. The ANN is then coupled with a GA to identify Pareto-optimal solutions based on user-defined objectives and constraints. Case studies validate the framework's capability to facilitate process design decisions by systematically exploring trade-offs among competing objectives, underscoring its potential utility in the digitalization of critical units within continuous manufacturing systems.
引用
收藏
页数:16
相关论文
共 59 条
[1]   On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system [J].
Adamo, Andrea ;
Beingessner, Rachel L. ;
Behnam, Mohsen ;
Chen, Jie ;
Jamison, Timothy F. ;
Jensen, Klavs F. ;
Monbaliu, Jean-Christophe M. ;
Myerson, Allan S. ;
Revalor, Eve M. ;
Snead, David R. ;
Stelzer, Torsten ;
Weeranoppanant, Nopphon ;
Wong, Shin Yee ;
Zhang, Ping .
SCIENCE, 2016, 352 (6281) :61-67
[2]  
Aspen Technology Inc, 2019, Aspen Plus V11 Software
[3]   Continuous end-to-end production of solid drug dosage forms: Coupling flow synthesis and formulation by electrospinning [J].
Balogh, Attila ;
Domokos, Andras ;
Farkas, Balazs ;
Farkas, Attila ;
Rapi, Zsolt ;
Kiss, Domokos ;
Nyiri, Zoltan ;
Eke, Zsuzsanna ;
Szarka, Gyorgyi ;
Orkenyi, Robert ;
Matravolgyi, Bela ;
Faigl, Ferenc ;
Marosi, Gyorgy ;
Nagy, Zsombor Kristof .
CHEMICAL ENGINEERING JOURNAL, 2018, 350 :290-299
[4]   Probabilistic Design space determination in pharmaceutical product development: A Bayesian/latent variable approach [J].
Bano, Gabriele ;
Facco, Pierantonio ;
Bezzo, Fabrizio ;
Barolo, Massimiliano .
AICHE JOURNAL, 2018, 64 (07) :2438-2449
[5]  
Benyahia B., 2021, Computer Aided Chemical Engineering, V50, P1371, DOI 10.1016/B978-0-323-88506-5.50211
[6]   Design Space of Pharmaceutical Processes Using Data-Driven-Based Methods [J].
Boukouvala, Fani ;
Muzzio, Fernando J. ;
Ierapetritou, Marianthi G. .
JOURNAL OF PHARMACEUTICAL INNOVATION, 2010, 5 (03) :119-137
[7]  
Campbell TJ., 2022, Comput Aided Chem Eng, V51, P775
[8]   On-Demand Continuous Manufacturing of Ciprofloxacin in Portable Plug-and-Play Factories: Implementation and In Situ Control of Downstream Production [J].
Capellades, Gerard ;
Neurohr, Clemence ;
Briggs, Naomi ;
Rapp, Kersten ;
Hammersmith, Gregory ;
Brancazio, David ;
Derksen, Bridget ;
Myerson, Allan S. .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2021, 25 (07) :1534-1546
[9]   Optimal model-based experimental design in batch crystallization [J].
Chung, SH ;
Ma, DL ;
Braatz, RD .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (01) :83-90
[10]   Mathematical modeling and digital design of an intensified filtration-washing-drying unit for pharmaceutical continuous manufacturing [J].
Destro, Francesco ;
Hur, Inyoung ;
Wang, Vivian ;
Abdi, Mesfin ;
Feng, Xin ;
Wood, Erin ;
Coleman, Simon ;
Firth, Paul ;
Barton, Alastair ;
Barolo, Massimiliano ;
Nagy, Zoltan K. .
CHEMICAL ENGINEERING SCIENCE, 2021, 244