Nitrogen fertilizers play a critical role in enhancing crop yields; however, excessive application has resulted in significant environmental challenges, including water contamination and increased greenhouse gas emissions. Therefore, improving nitrogen use efficiency is essential for sustainable agriculture. This review based on a systematic search of Web of Science and CNKI for peer-reviewed studies on maize nitrogen efficiency published between 1945 and 2024 (excluding conference abstracts), this review presents the first multiscale synthesis demonstrating how balanced nitrate-ammonium nutrition coordinates N-C metabolism and phytohormone signaling to boost nitrogen use efficiency and stimulate maize growth, with supporting evidence from other crops. By integrating results from hydroponic and field experiments, the review evaluates the influence of mixed nitrogen sources on nitrogen uptake, root morphology, photosynthesis, carbon metabolism, and hormone signaling. Findings indicate that optimal NO3-:NH4+ ratios improve nitrogen absorption through enhanced root development and activation of specific nitrogen transporters. Additionally, mixed nitrogen nutrition increases photosynthetic efficiency, promotes carbon assimilation, reduces energy expenditure, and stimulates auxin-mediated growth. This review shows that balanced nitrate-ammonium co-application synergistically enhances crop nitrogen-use efficiency and yield, provides a theoretical basis for high-efficiency nitrogen-fertilizer development, and helps alleviate environmental pressures, advance sustainable agriculture, and secure food and ecosystem safety. Its efficacy, however, is modulated by soil type, climate, and genotypic variation, necessitating systematic validation and application optimization in future research.