Artificial intelligence (AI) has emerged as a transformative tool for optimizing photovoltaic (PV) systems, enhancing energy efficiency, predictive maintenance, and fault detection. This study presents a systematic literature review and bibliometric analysis to identify the most commonly used AI techniques and their applications in PV systems. The review provides details on the advantages, limitations, and optimal use cases of various review techniques, such as Artificial Neural Networks, Fuzzy Logic, Convolutional Neural Networks, Long-Short Term Memory, Support Vector Machines, Decision Trees, Random Forest, k-Nearest Neighbors, and Particle Swarm Optimization. The findings highlight that maximum power point tracking (MPPT) optimization is the most widely researched AI application, followed by solar power forecasting, parameter estimation, fault detection and classification, and solar radiation forecasting. The bibliometric analysis reveals a growing trend in AI-PV research from 2018 to 2024, with China, the United States, and European countries leading in contributions. Furthermore, a type-2 fuzzy logic system is developed in MATLAB R2023b for automating AI technique selection based on the problem type, offering a practical tool for researchers, industry professionals, and policymakers. The study also discusses the practical implications of adopting AI in PV systems and provides future directions for research. This work serves as a comprehensive reference for advancing AI-driven solar PV technologies, contributing to a more efficient, reliable, and sustainable energy future.