Raspberry-like Cu2O/BiOBr S-scheme heterojunction photocatalyst for selective CO2 photoreduction to CO

被引:0
作者
Liang, Chenyu [1 ]
Wang, Junzhu [1 ]
Zhang, Kai [1 ]
Zhao, Jie [1 ]
Liu, Na [2 ]
Wang, Shutao [3 ]
机构
[1] China Jiliang Univ, Coll Metrol Measurement & Instrument, Hangzhou 310018, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Zhejiang, Peoples R China
[3] Yanshan Univ, Measurement Technol & Instrumentat Key Lab Hebei P, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
CO; 2; photoreduction; S -scheme heterojunction; Internal electric field; Charge carrier separation; Density Functional Theory (DFT) calculation; CONSTRUCTION;
D O I
10.1016/j.jallcom.2025.181424
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing efficient and stable photocatalysts for CO2 reduction is crucial for mitigating greenhouse gas emissions and addressing energy challenges. However, low photogenerated carriers separation efficiency and poor photocatalyst stability hinder their practical applications. In this work, a raspberry-like Cu2O/BiOBr (COB) Sscheme heterojunction photocatalyst is successfully synthesized via a hydrothermal method. Structural characterizations reveal that BiOBr uniformly encapsulates Cu2O, forming a tightly bonded interface conducive to charge transfer. Band structure analysis combined with density functional theory (DFT) calculations indicated that an internal electric field (IEF) is generated at the Cu2O/BiOBr interface, establishing an S-scheme charge transfer pathway. This configuration not only enhances the separation of photogenerated carriers but also significantly improves the photostability of Cu2O. As a result, the optimized COB-5 photocatalyst exhibits excellent CO2 photoreduction performance with a CO production rate of 47.0 mu mol center dot g- 1 center dot h- 1, along with superior cycling stability. Furthermore, in-situ infrared spectroscopy and Gibbs free energy calculations revealed that COB-5 effectively lowers the energy barrier for the formation of the key intermediate COOH*, facilitating the selective generation of CO. This study provides a promising strategy for the rational design of high-performance photocatalysts for efficient and stable CO2 reduction.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction [J].
Ali, Shahzad ;
Razzaq, Abdul ;
Kim, Hwapyong ;
In, Su-Il .
CHEMICAL ENGINEERING JOURNAL, 2022, 429
[2]   Efficient photocatalytic CO2 reduction coupled with selective styrene oxidation over a modified g-C3N4/BiOBr composite with high atom economy [J].
Bai, Peng ;
Zhao, Yicheng ;
Li, Yongdan .
GREEN CHEMISTRY, 2024, 26 (04) :2290-2299
[3]   Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C-H Bonds via Water Oxidation [J].
Cao, Xing ;
Huang, Aijian ;
Liang, Chao ;
Chen, Hsiao-Chien ;
Han, Tong ;
Lin, Rui ;
Peng, Qing ;
Zhuang, Zewen ;
Shen, Rongan ;
Chen, Hao Ming ;
Yu, Yi ;
Chen, Chen ;
Li, Yadong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (08) :3386-3397
[4]   Wurtzite CuGaS2 with an In-Situ-Formed CuO Layer Photocatalyzes CO2 Conversion to Ethylene with High Selectivity [J].
Chakraborty, Subhajit ;
Das, Risov ;
Riyaz, Mohd ;
Das, Kousik ;
Singh, Ashutosh Kumar ;
Bagchi, Debabrata ;
Vinod, Chathakudath P. ;
Peter, Sebastian C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)
[5]   Experimental Revelation of Surface and Bulk Lattices in Faceted Cu2O Crystals [J].
Chen, Bo-Hao ;
Kumar, Gautam ;
Wei, Yu-Jung ;
Ma, Hsueh-Heng ;
Kao, Jui-Cheng ;
Chou, Po-Jung ;
Chuang, Yu-Chun ;
Chen, I-Chia ;
Chou, Jyh-Pin ;
Lo, Yu-Chieh ;
Huang, Michael H. .
SMALL, 2023, 19 (44)
[6]   Construction of S-scheme UiO-66-NH2 /Zn0.4 Cd0.6 S hybrid architectures with strong interfacial interactions triggering efficient photocatalytic H2 O2 production, nitrogen fixation, and water splitting [J].
Chen, Wei ;
Lin, Shu-Zhen ;
Song, Zhenjun ;
Huang, Guo-Bo ;
Zhang, Min .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 232 :246-256
[7]   Emerging Strategies for CO2 Photoreduction to CH4: From Experimental to Data-Driven Design [J].
Cheng, Shuwen ;
Sun, Zhehao ;
Lim, Kang Hui ;
Gani, Terry Zhi Hao ;
Zhang, Tianxi ;
Wang, Yisong ;
Yin, Hang ;
Liu, Kaili ;
Guo, Haiwei ;
Du, Tao ;
Liu, Liying ;
Li, Gang Kevin ;
Yin, Zongyou ;
Kawi, Sibudjing .
ADVANCED ENERGY MATERIALS, 2022, 12 (20)
[8]   Defective materials for CO2 photoreduction: From C1 to C2+products [J].
Di, Jun ;
Hao, Gazi ;
Liu, Guigao ;
Zhou, Jiadong ;
Jiang, Wei ;
Liu, Zheng .
COORDINATION CHEMISTRY REVIEWS, 2023, 482
[9]   Postsynthetic Annulation of Three-Dimensional Covalent Organic Frameworks for Boosting CO2 Photoreduction [J].
Dong, Pengfei ;
Xu, Xinyu ;
Luo, Rengan ;
Yuan, Shuai ;
Zhou, Jun ;
Lei, Jianping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (28) :15473-15481
[10]   Construction of a p-n Type S-Scheme Heterojunction by Incorporating CsPbBr3 Nanocrystals into Mesoporous Cu2O Microspheres for Efficient CO2 Photoreduction [J].
Dong, Zhongliang ;
Zhou, Jiaxin ;
Zhang, Zhijie ;
Jiang, Ying ;
Zhou, Rui ;
Yao, Chunxia .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (08) :10076-10085