Green hydrogen production by photovoltaic-assisted alkaline water electrolysis: A review on the conceptualization and advancements

被引:0
作者
Tello, Alejandra [1 ]
Catano, Francisco A. [2 ,3 ]
Arunachalam, Arulraj [4 ]
Oyarzun, Diego [1 ]
Henriquez, Rodrigo [2 ]
Valdivia, Patricio [5 ]
Viswanathan, Mangalaraja Ramalinga [6 ,7 ]
Gomez, Humberto [2 ]
机构
[1] Univ Atacama, Fac Ciencias Nat, Dept Quim & Biol, Copayapu 485, Copiapo, Chile
[2] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Quim, Valparaiso, Chile
[3] Univ Santiago Chile USACH, Fac Quim & Biol, Dept Ciencias Ambiente, Grp Polimeros, Santiago, Chile
[4] Univ Tecnol Metropolitana UTEM, Fac Ingn, Dept Elect, Ave Jose Pedro Alessandri 1242, Santiago, Chile
[5] Univ Santiago Chile USACH, Dept Ingn Elect, Santiago, Chile
[6] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Diagonal Torres 2640, Santiago, Chile
[7] Univ Tecnol Metropolitana UTEM, Inst Univ Invest & Desarrollo Tecnol IDT, Ignacio Valdivieso 2409, Santiago, Chile
关键词
Alkaline water electrolyzer; Solar photovoltaic; Hydrogen production; Economic assessment; Advancements and challenges; SOLAR-ENERGY; SIMULATION; EFFICIENCY; EVOLUTION; FLOW; CELL; ELECTROCATALYSTS; CONVERTER; MODEL; FOAM;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The process of producing hydrogen by water electrolysis is becoming more and more popular as people look for clean and renewable energy sources. The alkaline electrolyzers show promising features, however, there is a room for improvement in the efficiency and energy usage. The research explores optimizing PV-assisted alkaline electrolysis setup to enhance the performance and reduce its energy input. The factors such as solar irradiation, electrolyzer design, catalysts, and operational parameters impacts the energy efficiency and hydrogen production rates. The strategies include coupling PV arrays and electrolyzers with DC/DC converters with MPPT to maximize power output. Thus, the underlying goal of the review is to present the strategies that can be applied to improve the process by considering the several operational conditions of the electrolyzer, which influence the gas quality and the energy efficiency. Further, the strategies to overcome the existing issues like variables over time, the effects of fluctuations in current, and the partial load operation of the electrical energy from the renewable sources are discussed. The advancements in the alkaline electrolyzer technology and their economic assessment and the energy efficiency of the for the hydrogen production are also addressed. As a conclusive remarks, the challenges and future perspectives of the PV-assisted alkaline water electrolyzer technology has been emphasized.
引用
收藏
页码:378 / 395
页数:18
相关论文
共 124 条
[1]   Techno-economic analysis for clean hydrogen production using solar energy under varied climate conditions [J].
Abbas, Majid K. ;
Hassan, Qusay ;
Tabar, Vahid Sohrabi ;
Tohidi, Sajjad ;
Jaszczur, Marek ;
Abdulrahman, Imad Saeed ;
Salman, Hayder M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (08) :2929-2948
[2]   Modelling and simulation of an alkaline electrolyser cell [J].
Abdin, Z. ;
Webb, C. J. ;
Gray, E. MacA. .
ENERGY, 2017, 138 :316-331
[3]   Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell [J].
Abdin, Z. ;
Webb, C. J. ;
Gray, E. MacA .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (39) :13243-13257
[4]   Techno-economic analysis and life cycle assessment of mixed plastic waste gasification for production of methanol and hydrogen [J].
Afzal, Shaik ;
Singh, Avantika ;
Nicholson, Scott R. ;
Uekert, Taylor ;
DesVeaux, Jason S. ;
Tan, Eric C. D. ;
Dutta, Abhijit ;
Carpenter, Alberta C. ;
Baldwin, Robert M. ;
Beckham, Gregg T. .
GREEN CHEMISTRY, 2023, 25 (13) :5068-5085
[5]   Electrode Separators for the Next-Generation Alkaline Water Electrolyzers [J].
Aili, David ;
Kraglund, Mikkel Rykaer ;
Rajappan, Sinu C. ;
Serhiichuk, Dmytro ;
Xia, Yifan ;
Deimede, Valadoula ;
Kallitsis, Joannis ;
Bae, Chulsung ;
Jannasch, Patric ;
Henkensmeier, Dirk ;
Jensen, Jens Oluf .
ACS ENERGY LETTERS, 2023, 8 (04) :1900-1910
[6]   BUBBLE SIZE, INTERFACIAL AREA, AND LIQUID-PHASE MASS-TRANSFER COEFFICIENT IN BUBBLE COLUMNS [J].
AKITA, K ;
YOSHIDA, F .
INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1974, 13 (01) :84-91
[7]   Nanomaterials as catalysts for CO2 transformation into value-added products: A review [J].
Alli, Yakubu Adekunle ;
Oladoye, Peter Olusakin ;
Ejeromedoghene, Onome ;
Bankole, Owolabi Mutolib ;
Alimi, Oyekunle Azeez ;
Omotola, Elizabeth Oyinkansola ;
Olanrewaju, Clement Ajibade ;
Philippot, Karine ;
Adeleye, Adeyemi S. ;
Ogunlaja, Adeniyi Sunday .
SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 868
[8]  
[Anonymous], 2019, BP STAT REV WORLD EN
[9]   Pathways to electrochemical solar-hydrogen technologies [J].
Ardo, Shane ;
Rivas, David Fernandez ;
Modestino, Miguel A. ;
Greiving, Verena Schulze ;
Abdi, Fatwa F. ;
Alarcon Llado, Esther ;
Artero, Vincent ;
Ayers, Katherine ;
Battaglia, Corsin ;
Becker, Jan-Philipp ;
Bederak, Dmytro ;
Berger, Alan ;
Buda, Francesco ;
Chinello, Enrico ;
Dam, Bernard ;
Di Palma, Valerio ;
Edvinsson, Tomas ;
Fujii, Katsushi ;
Gardeniers, Han ;
Geerlings, Hans ;
Hashemi, S. Mohammad H. ;
Haussener, Sophia ;
Houle, Frances ;
Huskens, Jurriaan ;
James, Brian D. ;
Konrad, Kornelia ;
Kudo, Akihiko ;
Kunturu, Pramod Patil ;
Lohse, Detlef ;
Mei, Bastian ;
Miller, Eric L. ;
Moore, Gary F. ;
Muller, Jiri ;
Orchard, Katherine L. ;
Rosser, Timothy E. ;
Saadi, Fadl H. ;
Schuttauf, Jan-Willem ;
Seger, Brian ;
Sheehan, Stafford W. ;
Smith, Wilson A. ;
Spurgeon, Joshua ;
Tang, Maureen H. ;
van de Krol, Roel ;
Vesborg, Peter C. K. ;
Westerik, Pieter .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2768-2783
[10]   Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting [J].
Arulraj, Arunachalam ;
Murugesan, Praveen Kumar ;
Rajkumar, C. ;
Zamorano, Alejandra Tello ;
Mangalaraja, Ramalinga Viswanathan .
ENERGIES, 2023, 16 (04)