Silver Telluride Quantum Dots on Silicon Near-Infrared Photodetectors

被引:2
作者
Mao, Chenlu [1 ,2 ,3 ]
Yao, Fulong [1 ,2 ,3 ]
Aleksandrov, Daniil [1 ,2 ,3 ]
Liu, Fenghua [1 ,2 ,3 ]
Wu, Weiping [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Lab Thin Film Opt, Shanghai 201800, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab Ultraintense Laser Sci & Technol, Shanghai 201800, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
quantum dots; infrared photodetectors; quantumefficiency; solution-processed colloidal QDs; printedelectronics; NANOCRYSTALS; EMISSION;
D O I
10.1021/acsami.5c01857
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ag2Te quantum dots (QDs) are narrow-bandgap, heavy metal-free QDs with significant potential for near-infrared detection. In this study, we fabricated a silicon-based Ag2Te QD near-infrared photodetector to assess its feasibility for large-scale silicon-based integration. The Ag2Te QDs synthesized by hot injection method, have an average size of 5 nm and a bandgap of 0.73 eV. These narrow bandgap Ag2Te QDs were successfully deposited onto silicon wafers following ligand exchange. At room temperature, the QD photodetector demonstrated a high responsivity of 150 A/W and a specific detectivity of 4.8 x 1012 Jones under 1050 nm illumination. Additionally, we investigated the effects of electrode positioning and QD film thickness on the device performances, establishing a foundation for the low-cost, large-scale integration of the narrow-bandgap QD materials with the silicon platform.
引用
收藏
页码:31230 / 31236
页数:7
相关论文
共 32 条
[1]   Recent advances in single crystal narrow band-gap semiconductor nanomembranes and their flexible optoelectronic device applications: Ge, GeSn, InGaAs, and 2D materials [J].
An, Shu ;
Park, HyunJung ;
Kim, Munho .
JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (07) :2430-2448
[2]   Semiconductor quantum dots: Technological progress and future challenges [J].
de Arquer, F. Pelayo Garcia ;
Talapin, Dmitri, V ;
Klimov, Victor, I ;
Arakawa, Yasuhiko ;
Bayer, Manfred ;
Sargent, Edward H. .
SCIENCE, 2021, 373 (6555) :640-+
[3]   Near-infrared fluorophores for biomedical imaging [J].
Hong, Guosong ;
Antaris, Alexander L. ;
Dai, Hongjie .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (01)
[4]  
Koppens FHL, 2014, NAT NANOTECHNOL, V9, P780, DOI [10.1038/nnano.2014.215, 10.1038/NNANO.2014.215]
[5]   Formation Mechanisms of Uniform Nanocrystals via Hot-Injection and Heat-Up Methods [J].
Kwon, Soon Gu ;
Hyeon, Taeghwan .
SMALL, 2011, 7 (19) :2685-2702
[6]   Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance [J].
Lee, Kwang Jin ;
Wei, Ran ;
Wang, Ye ;
Zhang, Jihua ;
Kong, Wenchi ;
Chamoli, Sandeep Kumar ;
Huang, Tao ;
Yu, Weili ;
ElKabbash, Mohamed ;
Guo, Chunlei .
NATURE PHOTONICS, 2023, 17 (03) :236-+
[7]   Progress, challenges, and opportunities for HgCdTe infrared materials and detectors [J].
Lei, Wen ;
Antoszewski, Jarek ;
Faraone, Lorenzo .
APPLIED PHYSICS REVIEWS, 2015, 2 (04)
[8]   Multilayer α′-4H-borophene growth on gallium arsenide towards high-performance near-infrared photodetector [J].
Liang, Xinchao ;
Hou, Chuang ;
Wu, Zenghui ;
Wu, Zitong ;
Tai, Guoan .
NANOTECHNOLOGY, 2023, 34 (20)
[9]   A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry [J].
Liu, Jing ;
Liu, Peilin ;
Chen, Dengyang ;
Shi, Tailong ;
Qu, Xixi ;
Chen, Long ;
Wu, Tong ;
Ke, Jiangping ;
Xiong, Kao ;
Li, Mingyu ;
Song, Haisheng ;
Wei, Wei ;
Cao, Junkai ;
Zhang, Jianbing ;
Gao, Liang ;
Tang, Jiang .
NATURE ELECTRONICS, 2022, 5 (07) :443-451
[10]   Borophene-ZnO heterostructures: Preparation and application as broadband photonic nonvolatile memory [J].
Liu, Runsheng ;
Hou, Chuang ;
Liang, Xinchao ;
Wu, Zitong ;
Tai, Guoan .
NANO RESEARCH, 2023, 16 (04) :5826-5833