Phase Transition during Sintering of Layered Transition Metal Oxide Sodium Cathodes

被引:0
作者
Ma, Fangbo [1 ]
Chen, Hao [1 ]
Wu, Hu [1 ]
Li, Xun-Lu [2 ]
Liu, Xiaotong [3 ]
Wen, Bohua [3 ]
Luo, Jiayan [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Global Inst Future Technol, Future Battery Res Ctr, Shanghai 200240, Peoples R China
[3] Tsinghua Univ, Mat Res Inst, Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[4] Shanghai Jiao Tong Univ, Zhangjiang Inst Adv Study, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-Ion Batteries; O3-type Layered Oxides; Precursor Morphology; Phase Transition; ION BATTERIES; PERFORMANCE; PRECURSOR;
D O I
10.1021/acs.nanolett.5c01518
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered cathodes derived from precursor materials have garnered significant attention in sodium ion battery (SIB) research. However, the structure evolution mechanisms during the sintering process remain inadequately understood. In this work, two precursors with irregular and regular morphologies were subjected to identical calcination conditions to synthesize O3-NaNi0.4Fe0.2Mn0.4O2 cathodes. Comprehensive analysis revealed that the irregular precursor underwent heterogeneous Na+ diffusion, resulting in an R3m structure shell encapsulating a substantial rock-salt phase core during the solid-state sodiation process. This leads to drastic phase transition and generated unfavorable pores in the subsequent high-temperature process. In contrast, the regular quasi-spherical precursor maintains a uniform Na+ accessibility throughout the sintering process, which facilitated optimal phase evolution and yielded superior electrochemical performance. This investigation elucidates the critical relationship between precursor morphology and phase transition dynamics, providing crucial insights into the rational design of precursor-derived layered cathodes in SIB applications.
引用
收藏
页码:9293 / 9301
页数:9
相关论文
共 46 条
[1]   Breaking boundaries in O3-type NaNi 1/3 Fe 1/3 Mn 1/3 O 2 cathode materials for sodium-ion batteries: An industrially scalable reheating strategy for superior electrochemical performance [J].
Chen, Manman ;
Zhang, Wenjuan ;
Chen, Chun ;
Zhang, Tao ;
Zhao, Cai ;
Li, Yan ;
Wang, Hui ;
Wang, Kaihang ;
Yang, Shengchen ;
Gao, Yue ;
Wen, Lei ;
Dai, Kehua ;
Mao, Jing .
JOURNAL OF ENERGY CHEMISTRY, 2025, 102 :107-119
[2]   Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries [J].
Cui, Xiaoling ;
Wang, Shimin ;
Ye, Xiushen ;
Fan, Xiaoqi ;
Gao, Cankun ;
Quan, Yin ;
Wen, Shuxiang ;
Cai, Xingpeng ;
Huang, Jin ;
Li, Shiyou .
ENERGY STORAGE MATERIALS, 2022, 45 :1153-1164
[3]   Origin of Fast Capacity Decay in Fe-Mn Based Sodium Layered Oxides [J].
Gao, Xu ;
Fang, Liang ;
Wang, HaoJi ;
Lee, Suwon ;
Liu, Huanqing ;
Zhang, Shu ;
Gao, Jinqiang ;
Mei, Yu ;
Park, Mihui ;
Zhang, Jing ;
Chen, Mingzhe ;
Zhou, Limin ;
Deng, Wentao ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Kang, Yong-Mook ;
Ji, Xiaobo .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (10)
[4]   2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries [J].
Hu, Yong-Sheng ;
Lu, Yaxiang .
ACS ENERGY LETTERS, 2019, 4 (11) :2689-2690
[5]   Chemical and Structural Evolution during the Synthesis of Layered Li(Ni,Co,Mn)O2 Oxides [J].
Hua, Weibo ;
Wang, Kai ;
Knapp, Michael ;
Schwarz, Bjoern ;
Wang, Suning ;
Liu, Hao ;
Lai, Jing ;
Mueller, Marcus ;
Schoekel, Alexander ;
Missyul, Alexander ;
Sanchez, Dario Ferreira ;
Guo, Xiaodong ;
Binder, Joachim R. ;
Xiong, Jie ;
Indris, Sylvio ;
Ehrenberg, Helmut .
CHEMISTRY OF MATERIALS, 2020, 32 (12) :4984-4997
[6]   Lanthanide-Doped Core@Multishell Nanoarchitectures: Multimodal Excitable Upconverting/Downshifting Luminescence and High-Level Anti-Counterfeiting [J].
Huang, Hai ;
Chen, Jiangkun ;
Liu, Yutong ;
Lin, Jidong ;
Wang, Shaoxiong ;
Huang, Feng ;
Chen, Daqin .
SMALL, 2020, 16 (19)
[7]   Mitigating voltage decay of O3-NaNi1/3Fe1/3Mn1/3O2 layered oxide cathode for sodium-ion batteries by incorporation of 5d metal tantalum [J].
Huang, Shuai ;
Sun, Yuanyuan ;
Yuan, Tao ;
Che, Haiying ;
Zheng, Qinfeng ;
Zhang, Yixiao ;
Li, Pengzhi ;
Qiu, Jian ;
Pang, Yuepeng ;
Yang, Junhe ;
Ma, Zi-Feng ;
Zheng, Shiyou .
CARBON NEUTRALIZATION, 2024, 3 (04) :584-596
[8]   Solid-State Reaction Heterogeneity During Calcination of Lithium-Ion Battery Cathode [J].
Jo, Sugeun ;
Han, Jeongwoo ;
Seo, Sungjae ;
Kwon, Oh-Sung ;
Choi, Subin ;
Zhang, Jin ;
Hyun, Hyejeong ;
Oh, Juhyun ;
Kim, Juwon ;
Chung, Jinkyu ;
Kim, Hwiho ;
Wang, Jian ;
Bae, Junho ;
Moon, Junyeob ;
Park, Yoon-Cheol ;
Hong, Moon-Hi ;
Kim, Miyoung ;
Liu, Yijin ;
Sohn, Il ;
Jung, Keeyoung ;
Lim, Jongwoo .
ADVANCED MATERIALS, 2023, 35 (10)
[9]   Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application [J].
Kim, Donghan ;
Lee, Eungje ;
Slater, Michael ;
Lu, Wenquan ;
Rood, Shawn ;
Johnson, Christopher S. .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 18 :66-69
[10]   Mixed layered Ni-Mn-Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition [J].
Kosova, N. V. ;
Devyatkina, E. T. ;
Kaichev, V. V. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :735-740