Hybrid Quantum Neural Network based Indoor User Localization using Cloud Quantum Computing

被引:0
作者
Mittal, Sparsh [1 ]
Chand, Yash [1 ]
Kundu, Neel Kanth [2 ,3 ]
机构
[1] Indian Inst Technol Delhi, Dept Phys, New Delhi, India
[2] Indian Inst Technol Delhi, Bharti Sch Telecommun Technol & Management, Ctr Appl Res Elect, New Delhi, India
[3] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic, Australia
来源
2024 IEEE REGION 10 SYMPOSIUM, TENSYMP | 2024年
关键词
quantum neural network; indoor localization; RSSI; quantum computing; IoT;
D O I
10.1109/TENSYMP61132.2024.10752291
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a hybrid quantum neural network (HQNN) for indoor user localization using received signal strength indicator (RSSI) values. We use publicly available RSSI datasets for indoor localization using WiFi, Bluetooth, and Zigbee to test the performance of the proposed HQNN. We also compare the performance of the HQNN with the recently proposed quantum fingerprinting-based user localization method. Our results show that the proposed HQNN performs better than the quantum fingerprinting algorithm since the HQNN has trainable parameters in the quantum circuits, whereas the quantum fingerprinting algorithm uses a fixed quantum circuit to calculate the similarity between the test data point and the fingerprint dataset. Unlike prior works, we also test the performance of the HQNN and quantum fingerprint algorithm on a real IBM quantum computer using cloud quantum computing services. Therefore, this paper examines the performance of the HQNN on noisy intermediate scale (NISQ) quantum devices using real-world RSSI localization datasets. The novelty of our approach lies in the use of simple feature maps and ansatz with fewer neurons, alongside testing on actual quantum hardware using real-world data, demonstrating practical applicability in real-world scenarios.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Quantum-Inspired Machine Learning for 6G: Fundamentals, Security, Resource Allocations, Challenges, and Future Research Directions [J].
Duong, Trung Q. ;
Ansere, James Adu ;
Narottama, Bhaskara ;
Sharma, Vishal ;
Dobre, Octavia A. ;
Shin, Hyundong .
IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2022, 3 :375-387
[2]   Quantum-Inspired Real-Time Optimization for 6G Networks: Opportunities, Challenges, and the Road Ahead [J].
Duong, Trung Q. ;
Nguyen, Long D. ;
Narottama, Bhaskara ;
Ansere, James Adu ;
Dang Van Huynh ;
Shin, Hyundong .
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 :1347-1359
[3]  
Eberechukwu N. P., 2023, IEEE ACCESS
[4]   Energy-Efficient Indoor Localization of Smart Hand-Held Devices Using Bluetooth [J].
Gu, Yu ;
Ren, Fuji .
IEEE ACCESS, 2015, 3 :1450-1461
[5]  
Guler E., 2023, Journal of Millimeterwave Communication, Optimization and Modelling, V3, P1
[6]  
Javadi-Abhari A., 2024, Quantum computing with qiskit
[7]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[8]  
Kramer O., 2013, Dimensionality Reduction with Unsupervised Nearest Neighbors, P13, DOI [10.1007/978-3-642-38652-7, 10.1007/978-3-642-38652-7_2, DOI 10.1007/978-3-642-38652-72]
[9]   Localization Challenges for the Emergence of the Smart World [J].
Pahlavan, Kaveh ;
Krishnamurthy, Prashant ;
Geng, Yishuang .
IEEE ACCESS, 2015, 3 :3058-3067
[10]   Memoryless Techniques and Wireless Technologies for Indoor Localization With the Internet of Things [J].
Sadowski, Sebastian ;
Spachos, Petros ;
Plataniotis, Konstantinos N. .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11) :10996-11005