GRAPH CONVOLUTIONAL NETWORK WITH LOCAL TOPOLOGY AND SPECTRAL FEATURE REPRESENTATION FOR MULTISPECTRAL POINT CLOUD CLASSIFICATION

被引:0
作者
Wang, Qingwang [1 ,2 ]
Chen, Xueqian [1 ,2 ]
Wang, Mingye [1 ,2 ]
Ful, Chengbiao [1 ,2 ]
Shen, Tao [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Kunming, Yunnan, Peoples R China
[2] Yunnan Key Lab Comp Technol Applicat, Kunming, Yunnan, Peoples R China
来源
2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024) | 2024年
基金
中国国家自然科学基金;
关键词
Multispectral point clouds; graph neural network; local feature; point cloud classification;
D O I
10.1109/IGARSS53475.2024.10641495
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Multispectral LiDAR contributes to the rapid acquisition of 3D spatial and spectral information of land covers, providing more comprehensive features for classification. Despite the impressive performance of existing Graph Neural Networks (GNNs) in point cloud classification, extracting local features with discriminative ability remains challenging in multispectral LiDAR scenes due to the uneven distribution of geometric and spectral information. To enhance the local representation of spectral features, we propose a novel Graph Convolutional Network with Local Topology and Spectral Feature Representation (GCN-LTSFR). The network constructs optimal local topological graphs of corresponding scales based on the feature distribution density of the point cloud to enhance local spectral features. Experimental results demonstrate that the proposed GCN-LTSFR outperforms several state-of-the-art methods on a real multispectral point cloud.
引用
收藏
页码:10207 / 10211
页数:5
相关论文
共 1 条
[1]   Switching the Electronic Properties of ZnO Surfaces with Negative T-Type Photochromic Pyridyl-dihydropyrene Layers and Impact of Fermi Level Pinning [J].
Wang, Qiankun ;
Ligorio, Giovanni ;
Schlesinger, Raphael ;
Diez-Cabanes, Valentin ;
Cornil, David ;
Garmshausen, Yves ;
Hecht, Stefan ;
Cornil, Jerome ;
List-Kratochvil, Emil J. W. ;
Koch, Norbert .
ADVANCED MATERIALS INTERFACES, 2019, 6 (10)